Human growth hormone treatment of hypophysectomized rats increases the proportion of type-1 fibres in skeletal muscle

1989 ◽  
Vol 123 (3) ◽  
pp. 429-NP ◽  
Author(s):  
C. M. Ayling ◽  
B. H. Moreland ◽  
J. M. Zanelli ◽  
D. Schulster

ABSTRACT The studies describe alterations after hypophysectomy in the proportion of the type-1 and type-2 fibres in rat skeletal muscles, and the effects of replacement treatment with pituitary human (h) GH. Cytochemical analysis of myosin ATPase, succinate dehydrogenase and lactate dehydrogenase activities in sections of rat hind limb muscles were used as markers of fibre type and revealed that hypophysectomy reduced the proportion of type-1 fibres by 50% in soleus and in extensor digitorum longus muscles. This reduction in the proportion of type-1 fibres was accompanied by the appearance of transitional fibres (type 2C/1B). Following seven daily injections of hGH (60 mIU/day) to hypophysectomized rats, the proportion of type-1 fibres in both soleus and in extensor digitorum longus was increased with a concomitant reduction in the number of transitional fibres. After 11 days of treatment, all these transitional fibres had reverted back to type-1 fibres. Only hGH was observed to elicit this effect; injections of other pituitary hormones had no effect on the proportions of these transitional fibres. These alterations in fibre type occurred more rapidly than the changes reported after prolonged electrical stimulation of muscle or following extended exercise. These findings suggest that hypophysectomy and GH injection can result in a rapid alteration in the fibre composition of skeletal muscle, which may have important implications in terms of the resistance to fatigue and speed of contraction of the muscle. Journal of Endocrinology (1989) 123, 429–435

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
David P. McBey ◽  
Michelle Dotzert ◽  
C. W. J. Melling

Abstract Background Intensive-insulin treatment (IIT) strategy for patients with type 1 diabetes mellitus (T1DM) has been associated with sedentary behaviour and the development of insulin resistance. Exercising patients with T1DM often utilize a conventional insulin treatment (CIT) strategy leading to increased insulin sensitivity through improved intramyocellular lipid (IMCL) content. It is unclear how these exercise-related metabolic adaptations in response to exercise training relate to individual fibre-type transitions, and whether these alterations are evident between different insulin strategies (CIT vs. IIT). Purpose: This study examined glycogen and fat content in skeletal muscle fibres of diabetic rats following exercise-training. Methods Male Sprague-Dawley rats were divided into four groups: Control-Sedentary, CIT- and IIT-treated diabetic sedentary, and CIT-exercised trained (aerobic/resistance; DARE). After 12 weeks, muscle-fibre lipids and glycogen were compared through immunohistochemical analysis. Results The primary findings were that both IIT and DARE led to significant increases in type I fibres when compared to CIT, while DARE led to significantly increased lipid content in type I fibres compared to IIT. Conclusions These findings indicate that alterations in lipid content with insulin treatment and DARE are primarily evident in type I fibres, suggesting that muscle lipotoxicity in type 1 diabetes is muscle fibre-type dependant.


1971 ◽  
Vol 121 (5) ◽  
pp. 817-827 ◽  
Author(s):  
R. C. Hider ◽  
E. B. Fern ◽  
D. R. London

1. The kinetics of radioactive labelling of extra- and intra-cellular amino acid pools and protein of the extensor digitorum longus muscle were studied after incubations with radioactive amino acids in vitro. 2. The results indicated that an extracellular pool could be defined, the contents of which were different from those of the incubation medium. 3. It was concluded that amino acids from the extracellular pool, as defined in this study, were incorporated directly into protein.


1993 ◽  
Vol 74 (5) ◽  
pp. 2161-2165 ◽  
Author(s):  
M. E. Tischler ◽  
E. J. Henriksen ◽  
K. A. Munoz ◽  
C. S. Stump ◽  
C. R. Woodman ◽  
...  

Our knowledge of the effects of unweighting on skeletal muscle of juvenile rapidly growing rats has been obtained entirely by using hindlimb-suspension models. No spaceflight data on juvenile animals are available to validate these models of simulated weightlessness. Therefore, eight 26-day-old female Sprague-Dawley albino rats were exposed to 5.4 days of weightlessness aboard the space shuttle Discovery (mission STS-48, September 1991). An asynchronous ground control experiment mimicked the flight cage condition, ambient shuttle temperatures, and mission duration for a second group of rats. A third group of animals underwent hindlimb suspension for 5.4 days at ambient temperatures. Although all groups consumed food at a similar rate, flight animals gained a greater percentage of body mass per day (P < 0.05). Mass and protein data showed weight-bearing hindlimb muscles were most affected, with atrophy of the soleus and reduced growth of the plantaris and gastrocnemius in both the flight and suspended animals. In contrast, the non-weight-bearing extensor digitorum longus and tibialis anterior muscles grew normally. Earlier suspension studies showed that the soleus develops an increased sensitivity to insulin during unweighting atrophy, particularly for the uptake of 2-[1,2–3H]deoxyglucose. Therefore, this characteristic was studied in isolated muscles within 2 h after cessation of spaceflight or suspension. Insulin increased uptake 2.5- and 2.7-fold in soleus of flight and suspended animals, respectively, whereas it increased only 1.6-fold in control animals. In contrast, the effect of insulin was similar among the three groups for the extensor digitorum longus, which provides a control for potential systemic differences in the animals.


1983 ◽  
Vol 216 (3) ◽  
pp. 605-610 ◽  
Author(s):  
T G Sheehan ◽  
E R Tully

Purine biosynthesis by the ‘de novo’ pathway was demonstrated in isolated rat extensor digitorum longus muscle with [1-14C]glycine, [3-14C]serine and sodium [14C]formate as nucleotide precursors. Evidence is presented which suggests that the source of glycine and serine for purine biosynthesis is extracellular rather than intracellular. The relative incorporation rates of the three precursors were formate greater than glycine greater than serine. Over 85% of the label from formate and glycine was recovered in the adenine nucleotides, principally ATP. Azaserine markedly inhibited purine biosynthesis from both formate and glycine. Cycloserine inhibited synthesis from serine, but not from formate. Adenine, hypoxanthine and adenosine markedly inhibited purine synthesis from sodium [14C]formate.


1982 ◽  
Vol 242 (3) ◽  
pp. C234-C241 ◽  
Author(s):  
D. R. Manning ◽  
J. T. Stull

Phosphorylation of the myosin light chain 2 (LC2) subunit was examined in rat fast-twitch and slow-twitch skeletal muscles in response to repetitive stimulation at 23 and 35 degrees C and on incubation of fast-twitch skeletal muscle with isoproterenol. After a 1-s tetany at 35 degrees C, LC2 phosphate content in extensor digitorum longus muscle increased rapidly and transiently from 0.21 to 0.51 mol phosphate/mol LC2. This pattern of phosphorylation was similar to that observed at 23 degrees C. Increases in LC2 phosphate content were dependent on the frequency and duration of stimulation. In soleus muscle LC2 phosphate content was minimal following a 1-s tetany but increased markedly following more prolonged tetanies. On incubation of extensor digitorum longus muscle with isoproterenol (20 microM), LC2 phosphate content did not change, whereas phosphorylase a levels increased. A positive correlation existed between LC2 phosphate content and potentiation of peak twitch tension in both types of muscles, suggesting a physiological function for LC2 phosphorylation.


1990 ◽  
Vol 68 (9) ◽  
pp. 1207-1213 ◽  
Author(s):  
Margarete M. Trachez ◽  
R. Takashi Sudo ◽  
G. Suarez-Kurtz

Denervation potentiated the cooling-induced contractures and the halothane-cooling contractures of isolated extensor digitorum longus and soleus muscles of the mouse. These effects were more striking in extensor digitorum longus than in soleus muscles. Significant increases in the peak amplitudes of the halothane-cooling contractures of both muscles and of the cooling contractures of soleus muscle were observed within 2 and 7 days of denervation. The potentiation of the contractures persisted for 90 days, the period of this study. Denervation (>2 days) endowed extensor digitorum longus with the ability to generate cooling contractures in the absence of halothane. The rate of tension development of cooling-induced contractures in the absence or presence of halothane was significantly greater in denervated (2–90 days) than in innervated muscles. Denervation also reduced the effectiveness of procaine in inhibiting the halothane-cooling contractures. It is proposed that the potentiation of cooling-induced contractures in denervated muscles results primarily from an increase in the rate of efflux and in the quantity of Ca2+ released from the sarcoplasmic reticulum, upon cooling and (or) when challenged with halothane.Key words: denervation, excitation–contraction coupling, halothane, cooling-induced contractures, skeletal muscle.


1990 ◽  
Vol 267 (1) ◽  
pp. 37-44 ◽  
Author(s):  
P O Hasselgren ◽  
M Hall-Angerås ◽  
U Angerås ◽  
D Benson ◽  
J H James ◽  
...  

The present study characterized total and myofibrillar protein breakdown rates in a muscle preparation frequently used in vitro, i.e. incubated extensor digitorum longus (EDL) and soleus (SOL) muscles of young rats. Total and myofibrillar protein breakdown rates were assessed by determining net production by the incubated muscles of tyrosine and 3-methylhistidine (3-MH) respectively. Both amino acids were determined by h.p.l.c. Both total and myofibrillar protein breakdown rates were higher in SOL than in EDL muscles and were decreased by incubating the muscles maintained at resting length, rather than flaccid. After fasting for 72 h, total protein breakdown (i.e. tyrosine release) was increased by 73% and 138% in EDL muscles incubated flaccid and at resting length respectively. Net production of tyrosine by SOL muscle was not significantly altered by fasting. In contrast, myofibrillar protein degradation (i.e. 3-MH release) was markedly increased by fasting in both muscles. When tissue was incubated in the presence of 1 munit of insulin/ml, total protein breakdown rate was inhibited by 17-20%, and the response to the hormone was similar in muscles incubated flaccid or at resting length. In contrast, myofibrillar protein breakdown rate was not altered by insulin in any of the muscle preparations. The results support the concepts of individual regulation of myofibrillar and non-myofibrillar proteins and of different effects of various conditions on protein breakdown in different types of skeletal muscle. Thus determination of both tyrosine and 3-MH production in red and white muscle is important for a more complete understanding of protein regulation in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document