scholarly journals Study of the stability of a thin liquid layer in the Landau–Levich problem

Author(s):  
A. V. Lyushnin ◽  
◽  
K. A. Permyakova ◽  

The stability of the liquid layer in the Landay–Levich problem is theoretically investigated. The free energy of this layer is the sum of the dispersion (van der Waals) interaction and the specific electrical interaction caused by the presence of two electric layers at both interphase boundaries. In the framework of long-wave approximation, the stability of such a system with respect to perturbations is studied in the system of Navier–Stokes equations. A stability map is provided for different layer thicknesses.

Author(s):  
A. V. Lyushnin ◽  

The stability of the liquid layer in the Landau–Levich problem is theoretically investigated in the presence of the evaporation effect from the free surface. The free energy of a thin layer of an incompressible fluid is the sum of the dispersion (van der Waals) interaction and the specific electrical interaction caused by the presence of double electric layers at both interphase boundaries. The stability of such a system with respect to perturbations is studied in the framework of the long – wave approximation in the system of Navier-Stokes equations. A stability map is provided for different values of the evaporation parameter. It is established that the stability of the system increases with an increase in the dimensionless number of evaporation.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Graham Ashcroft ◽  
Christian Frey ◽  
Kathrin Heitkamp ◽  
Christian Weckmüller

This is the first part of a series of two papers on unsteady computational fluid dynamics (CFD) methods for the numerical simulation of aerodynamic noise generation and propagation. In this part, the stability, accuracy, and efficiency of implicit Runge–Kutta schemes for the temporal integration of the compressible Navier–Stokes equations are investigated in the context of a CFD code for turbomachinery applications. Using two model academic problems, the properties of two explicit first stage, singly diagonally implicit Runge–Kutta (ESDIRK) schemes of second- and third-order accuracy are quantified and compared with more conventional second-order multistep methods. Finally, to assess the ESDIRK schemes in the context of an industrially relevant configuration, the schemes are applied to predict the tonal noise generation and transmission in a modern high bypass ratio fan stage and comparisons with the corresponding experimental data are provided.


1976 ◽  
Vol 78 (2) ◽  
pp. 355-383 ◽  
Author(s):  
H. Fasel

The stability of incompressible boundary-layer flows on a semi-infinite flat plate and the growth of disturbances in such flows are investigated by numerical integration of the complete Navier–;Stokes equations for laminar two-dimensional flows. Forced time-dependent disturbances are introduced into the flow field and the reaction of the flow to such disturbances is studied by directly solving the Navier–Stokes equations using a finite-difference method. An implicit finitedifference scheme was developed for the calculation of the extremely unsteady flow fields which arose from the forced time-dependent disturbances. The problem of the numerical stability of the method called for special attention in order to avoid possible distortions of the results caused by the interaction of unstable numerical oscillations with physically meaningful perturbations. A demonstration of the suitability of the numerical method for the investigation of stability and the initial growth of disturbances is presented for small periodic perturbations. For this particular case the numerical results can be compared with linear stability theory and experimental measurements. In this paper a number of numerical calculations for small periodic disturbances are discussed in detail. The results are generally in fairly close agreement with linear stability theory or experimental measurements.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Wen-Juan Wang ◽  
Yan Jia

We study the stability issue of the generalized 3D Navier-Stokes equations. It is shown that if the weak solutionuof the Navier-Stokes equations lies in the regular class∇u∈Lp(0,∞;Bq,∞0(ℝ3)),(2α/p)+(3/q)=2α,2<q<∞,0<α<1, then every weak solutionv(x,t)of the perturbed system converges asymptotically tou(x,t)asvt-utL2→0,t→∞.


Author(s):  
Fayçal Hammami ◽  
Nader Ben Cheikh ◽  
Brahim Ben Beya

This paper deals with the numerical study of bifurcations in a two-sided lid driven cavity flow. The flow is generated by moving the upper wall to the right while moving the left wall downwards. Numerical simulations are performed by solving the unsteady two dimensional Navier-Stokes equations using the finite volume method and multigrid acceleration. In this problem, the ratio of the height to the width of the cavity are ranged from H/L = 0.25 to 1.5. The code for this cavity is presented using rectangular cavity with the grids 144 × 36, 144 × 72, 144 × 104, 144 × 136, 144 × 176 and 144 × 216. Numerous comparisons with the results available in the literature are given. Very good agreements are found between current numerical results and published numerical results. Various velocity ratios ranged in 0.01≤ α ≤ 0.99 at a fixed aspect ratios (A = 0.5, 0.75, 1.25 and 1.5) were considered. It is observed that the transition to the unsteady regime follows the classical scheme of a Hopf bifurcation. The stability analysis depending on the aspect ratio, velocity ratios α and the Reynolds number when transition phenomenon occurs is considered in this paper.


2011 ◽  
Vol 1 (3) ◽  
pp. 215-234 ◽  
Author(s):  
Lizhen Chen ◽  
Jie Shen ◽  
Chuanju Xu

AbstractWe propose and analyze spectral direction splitting schemes for the incompressible Navier-Stokes equations. The schemes combine a Legendre-spectral method for the spatial discretization and a pressure-stabilization/direction splitting scheme for the temporal discretization, leading to a sequence of one-dimensional elliptic equations at each time step while preserving the same order of accuracy as the usual pressure-stabilization schemes. We prove that these schemes are unconditionally stable, and present numerical results which demonstrate the stability, accuracy, and efficiency of the proposed methods.


Author(s):  
Sakir Amiroudine

The case of a supercritical fluid heated from below (Rayleigh-Bénard) in a rectangular cavity is first presented. The stability of the two boundary layers (hot and cold) is analyzed by numerically solving the Navier-Stokes equations with a van der Waals gas and stability diagrams are derived. The very large compressibility and the very low heat diffusivity of near critical pure fluids induce very large density gradients which lead to a Rayleigh–Taylor-like gravitational instability of the heat diffusion layer and results in terms of growth rates and wave numbers are presented. Depending on the relative direction of the interface or the boundary layer with respect to vibration, vibrational forces can destabilize a thermal boundary layer, resulting in parametric/Rayleigh vibrational instabilities. This has recently been achieved by using a numerical model which does not require any equation of state and directly calculates properties from NIST data base, for instance.


Author(s):  
Jean-Yves Chemin ◽  
Benoit Desjardins ◽  
Isabelle Gallagher ◽  
Emmanuel Grenier

In this chapter we intend to investigate the stability of the Leray solutions constructed in the previous chapter. It is useful to start by analyzing the linearized version of the Navier–Stokes equations, so the first section of the chapter is devoted to the proof of the well-posedness of the time-dependent Stokes system. The study will be applied in Section 3.2 to the two-dimensional Navier–Stokes equations, and the more delicate case of three space dimensions will be dealt with in Sections 3.3–3.5.


Author(s):  
Guangding Wang ◽  
Huiqun Yuan ◽  
Hongyun Sun

In this paper, the stability of a flexible rotor partially filled with liquid is investigated. On the basis of the Navier-Stokes equations for the incompressible flow, a two-dimensional analytical model is developed for fluid motion. Applying the perturbation method, the linearized Navier-Stokes and continuity equations of fluid particles are obtained. Using the boundary conditions of fluid motion, the fluid forces exerted on the rotor are calculated. According to the established fluid-structure coupling model of the rotor system, the whirling frequency equation, which is applied to determine the stability of the system, is derived. The analysis results of the system stability are compared with the theoretical ones reported in the previous study. Good agreement is shown between the results of the present analysis and the literature results. The influences of the main parameters on the dynamic stability of the rotor system are discussed.


Sign in / Sign up

Export Citation Format

Share Document