scholarly journals Identifikasi Keterdapatan Mineral Radioaktif pada Granit Muncung Sebagai Tahap Awal untuk Penilaian Prospek Uranium dan Thorium di Pulau Singkep

EKSPLORIUM ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 63
Author(s):  
Ngadenin Ngadenin ◽  
Adhika Junara Karunianto

ABSTRAKPulau Singkep adalah bagian dari jalur timah Asia Tenggara, yang salah satu litologinya tersusun oleh granit Muncung. Keberadaan granit tersebut memungkinkan adanya cebakan mineral radioaktif yang prospek terhadap uranium dan thorium. Penelitian ini bertujuan untuk mengidentifikasi keterdapatan mineral radioaktif  pada granit Muncung sebagai tahap awal untuk penilaian prospek uranium dan thorium di Pulau Singkep. Metoda yang digunakan adalah pengambilan sampel batuan granit, analisis petrografi sampel granit Muncung, analisis kadar uranium dan thorium serta analisis butir sampel konsentrat dulang yang diambil di wilayah granit Muncung. Mineral radioaktif pada granit Muncung adalah monasit dan zirkon sedangkan pada konsentrat dulang adalah monasit, zirkon, dan senotim. Persentase monasit dalam konsentrat dulang adalah 1,1 – 59,53 %, zirkon 0,68 –55,07 % dan senotim 0,39 – 3,54 %. Kadar uranium dalam konsentrat dulang adalah 30 – 1.346 ppm dan kadar thorium 557 – 13.200 ppm. Disimpulkan bahwa daerah di sekitar granit Muncung dianggap cukup prospek uranium dan thorium dan dapat dikembangkan ke tahapan eksplorasi lebih detail. ABSTRACTSingkep Island is part of Southeast Asia tin belt, which is one of the lithologies, composed of granite Muncung. Existence of granite allows formed deposits of radioactive minerals that prospect of the uranium and thorium. This research goal is to identify radioactive minerals occurrences on granit Muncung in the initial stage for prospect assessment of uranium and thorium in Singkep Island. The Methodologies are granite sampling, petrography analysis of Muncung granite samples, uranium and thorium content analysis and grain size analysis of pan concentrate samples. Radioactive minerals in Muncung granite are monazite and zircon, while in pan concentrate they are monazite, zircon, and xenotime.  The percentage of monazite, zircon, and xenotime in the pan concentrate are 1.1–59.53 %, 0.68–55.07 %, and 0.3–3.54 % respectively. The uranium and thorium content in the pan concentrate are 30–1,346 ppm and 557–13,200 ppm respectively. It concluded that the area around the Muncung granite considered prospect for uranium and thorium, and possibly developed into more detailed exploration stage.

Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Srećko Bevandić ◽  
Rosie Blannin ◽  
Jacqueline Vander Auwera ◽  
Nicolas Delmelle ◽  
David Caterina ◽  
...  

Mine wastes and tailings derived from historical processing may contain significant contents of valuable metals due to processing being less efficient in the past. The Plombières tailings pond in eastern Belgium was selected as a case study to determine mineralogical and geochemical characteristics of the different mine waste materials found at the site. Four types of material were classified: soil, metallurgical waste, brown tailings and yellow tailings. The distribution of the mine wastes was investigated with drill holes, pit-holes and geophysical methods. Samples of the materials were assessed with grain size analysis, and mineralogical and geochemical techniques. The mine wastes dominantly consist of SiO2, Al2O3 and Fe2O3. The cover material, comprising soil and metallurgical waste is highly heterogeneous in terms of mineralogy, geochemistry and grain size. The metallurgical waste has a high concentration of metals (Zn: 0.1 to 24 wt.% and Pb: 0.1 to 10.1 wt.%). In the tailings materials, Pb and Zn vary from 10 ppm to 8.5 wt.% and from 51 ppm to 4 wt.%, respectively. The mining wastes comprises mainly quartz, amorphous phases and phyllosilicates, with minor contents of Fe-oxide and Pb- and Zn-bearing minerals. Based on the mineralogical and geochemical properties, the different potential applications of the four waste material types were determined. Additionally, the theoretical economic potential of Pb and Zn in the mine wastes was estimated.


2021 ◽  
Vol 11 (6) ◽  
pp. 2799
Author(s):  
Yanping Chen ◽  
Wenzhe Lyu ◽  
Tengfei Fu ◽  
Yan Li ◽  
Liang Yi

The Huanghe River (Yellow River) is the most sediment laden river system in the world, and many efforts have been conducted to understand modern deltaic evolution in response to anthropological impacts. However, the natural background and its linkage to climatic changes are less documented in previous studies. In this work, we studied the sediments of core YDZ–3 and marine surface samples by grain-size analysis to retrieve Holocene dynamics of the Huanghe River delta in detail. The main findings are as follows: The mean value of sediment grain size of the studied core is 5.5 ± 0.9 Φ, and silt and sand contents are 5.2 ± 2.3% and 8.2 ± 5.3%, respectively, while the variance of clay particles is relatively large with an average value of 86.4 ± 8.5%. All grain-size data can be mathematically partitioned by a Weibull-based function formula, and three subgroups were identified with modal sizes of 61.1 ± 28.9 μm, 30.0 ± 23.9 μm, and 2.8 ± 1.6 μm, respectively. There are eight intervals with abrupt changes in modal size of core YDZ–3, which can be correlated to paleo-superlobe migration of the Huanghe River in the Holocene. Based on these observations, the presence of seven superlobes in the history are confirmed for the first time and their ages are well constrained in this study, including Paleo-Superlobes Lijin (6400–5280 yr BP), Huanghua (4480–4190 yr BP), Jugezhuang (3880–3660 yr BP), Shajinzi (3070–2870 yr BP), Nigu (2780–2360 yr BP), Qikou (2140–2000 yr BP), and Kenli (1940–1780 and 1700–1650 yr BP). By tuning geomorphological events to a sedimentary proxy derived from core YDZ–3 and comparing to various paleoenvironmental changes, we proposed that winter climate dominated Holocene shifts of the Huanghe River delta on millennial timescales, while summer monsoons controlled deltaic evolution on centennial timescales.


1996 ◽  
Vol 2 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Andrew J. C. Hogg ◽  
Alan W. Mitchell ◽  
Susan Young

Sign in / Sign up

Export Citation Format

Share Document