scholarly journals TLR agonists activate HPV11 E7-pulsed DCs to promote a specific T cell response in a murine model

2011 ◽  
Vol 56 (No. 12) ◽  
pp. 602-611 ◽  
Author(s):  
XH Mao ◽  
XZ Chen ◽  
WW Zhang ◽  
JY Wang ◽  
LF Liu ◽  
...  

: Some TLR agonists may up-regulate the activation of dendritic cells caused by viral antigenic peptides and antigen-specific cytotoxic T lymphocytes, which are crucial in HPV vaccine development. We investigated the ability of three TLR agonists, imiquimod, PIC and CpG, to stimulate the maturation of murine BM-DCs loaded with HPV11E7 CTL epitopes, and the subsequent effect on HPV-specific T cell responses and tumour protection in a C57BL/6 mouse model. We found that TLR agonists, mostly PIC and imiquimod, stimulated the maturation of BM-DCs pulsed with HPV11E7 CTL epitope peptide. In combination with the epitope peptide, the TLR agonists CPG and PIC augmented epitope-specific Th1 cytokine production in vivo, while imiquimod and CPG, but not PIC, enhanced Th1 cytokine production in vitro. However, we failed to observe in vivo CTL cytotoxicity and anti-tumour protection upon TLR ligation in our mouse model. Our results demonstrate that TLR agonists activate HPV11E7 CTL epitope pulsed BM-DCs to promote specific Th1 immunity in C57BL/6 mouse model, indicating the promise of TLR agonists as adjuvants for HPV epitope/DC-based multifaceted vaccines against HPV infections such as condyloma accuminatum.  

2020 ◽  
Author(s):  
Ying Ma ◽  
Kang Tang ◽  
Yusi Zhang ◽  
Chunmei Zhang ◽  
Linfeng Cheng ◽  
...  

Abstract Background: An effective vaccine that prevents disease caused by hantaviruses is a global public health priority, but up to now, no vaccine has been approved for worldwide use. Therefore, novel vaccines with high prophylaxis efficacy are urgently needed.Methods: Herein, we designed and synthesized Hantaan virus (HTNV) linear multi-epitope peptide consisting of HLA-A*02-restricted HTNV cytotoxic T cell (CTL) epitope and pan HLA-DR-binding epitope (PADRE), and evaluated the immunogenicity, as well as effectiveness, of multi-epitope peptides in HLA-A2.1/Kb transgenic mice with interferon (IFN)-γ enzyme-linked immunospot assay, cytotoxic mediator detection, proliferation assay and HTNV-challenge test.Results: The results showed that a much higher frequency of specific IFN-γ-secreting CTLs, high levels of granzyme B production, and a strong proliferation capacity of specific CTLs were observed in splenocytes of mice immunized with multi-epitope peptide than in those of a single CTL epitope. Moreover, pre-immunization of multi-epitope peptide could reduce the levels of HTNV RNA loads in the liver, spleen and kidneys of mice, indicating that specific CTL responses induced by multi-epitope peptide could reduce HTNV RNA loads in vivo.Conclusions: This study may provide an important foundation for the development of novel peptide vaccines for HTNV prophylaxis.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Ying Ma ◽  
Kang Tang ◽  
Yusi Zhang ◽  
Chunmei Zhang ◽  
Linfeng Cheng ◽  
...  

Abstract Background An effective vaccine that prevents disease caused by hantaviruses is a global public health priority, but up to now, no vaccine has been approved for worldwide use. Therefore, novel vaccines with high prophylaxis efficacy are urgently needed. Methods Herein, we designed and synthesized Hantaan virus (HTNV) linear multi-epitope peptide consisting of HLA-A*02-restricted HTNV cytotoxic T cell (CTL) epitope and pan HLA-DR-binding epitope (PADRE), and evaluated the immunogenicity, as well as effectiveness, of multi-epitope peptides in HLA-A2.1/Kb transgenic mice with interferon (IFN)-γ enzyme-linked immunospot assay, cytotoxic mediator detection, proliferation assay and HTNV-challenge test. Results The results showed that a much higher frequency of specific IFN-γ-secreting CTLs, high levels of granzyme B production, and a strong proliferation capacity of specific CTLs were observed in splenocytes of mice immunized with multi-epitope peptide than in those of a single CTL epitope. Moreover, pre-immunization of multi-epitope peptide could reduce the levels of HTNV RNA loads in the liver, spleen and kidneys of mice, indicating that specific CTL responses induced by multi-epitope peptide could reduce HTNV RNA loads in vivo. Conclusions This study may provide an important foundation for the development of novel peptide vaccines for HTNV prophylaxis.


2020 ◽  
Author(s):  
Ying Ma ◽  
Kang Tang ◽  
Yusi Zhang ◽  
Chunmei Zhang ◽  
Linfeng Cheng ◽  
...  

Abstract Background An effective vaccine that prevents disease caused by hantaviruses is a global public health priority, but up to now, no vaccine has been approved for worldwide use. Therefore, novel vaccines with high prophylaxis efficacy are urgently needed.Methods Herein, we designed and synthesized Hantaan virus (HTNV) linear multi-epitope peptide consisting of HLA-A*02-restricted HTNV cytotoxic T cell (CTL) epitope and pan HLA-DR-binding epitope (PADRE), and evaluated the immunogenicity, as well as effectiveness, of multi-epitope peptides in HLA-A2.1/Kb transgenic mice with interferon (IFN)-γ enzyme-linked immunospot assay, cytotoxic mediator detection, proliferation assay and HTNV-challenge test.Results The results showed that a much higher frequency of specific IFN-γ-secreting CTLs, high levels of granzyme B production, and a strong proliferation capacity of specific CTLs were observed in splenocytes of mice immunized with multi-epitope peptide than in those of a single CTL epitope. Moreover, pre-immunization of multi-epitope peptide could reduce the levels of HTNV RNA loads in the liver, spleen and kidneys of mice, indicating that specific CTL responses induced by multi-epitope peptide could inhibit HTNV replication in vivo.Conclusions This study may provide an important foundation for the development of novel peptide vaccines for HTNV prophylaxis.


2000 ◽  
Vol 192 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Nathan J. Felix ◽  
W. June Brickey ◽  
Robert Griffiths ◽  
Jinghua Zhang ◽  
Luc Van Kaer ◽  
...  

The role played by antigenic peptides bound to major histocompatibility complex (MHC) molecules is evaluated with H2-DMα−/− mice. These mice have predominantly class II–associated invariant chain peptide (CLIP)-, not antigenic peptide–bound, MHC class II. H2-DMα−/− donor heart grafts survived three times longer than wild-type grafts and slightly longer than I-Aβb−/− grafts. Proliferative T cell response was absent, and cytolytic response was reduced against the H2-DMα−/− grafts in vivo. Residual cytolytic T cell and antibody responses against intact MHC class I lead to eventual rejection. Removal of both H2-DMα and β2-microglobulin (β2m) in cardiac grafts lead to greater (8–10 times) graft survival, whereas removal of β2m alone did not have any effect. These results demonstrate the significance of peptide rather than just allogeneic MHC, in eliciting graft rejection.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A38.1-A38
Author(s):  
S Schmitt ◽  
A Lohner ◽  
K Deiser ◽  
A Maiser ◽  
M Rothe ◽  
...  

BackgroundDendritic cells (DCs) are antigen-presenting cells that induce antigen-specific T-cell responses. Therefore, they are used as tools and targets for anti-tumor vaccination. In contrast to T-cell based immunotherapies, that are often limited to surface antigens, DC-based vaccination strategies open up new therapeutic options by utilizing highly abundant intracellular tumor antigens as a target source. Among those, recent interest has been focused on the identification of neoantigens derived from tumor-specific mutations. Especially mutated Nucleophosmin 1 (ΔNPM1) is a considered candidate for targeted therapy in acute myeloid leukemia (AML). We developed a multifunctional antibody construct consisting of a peptide domain including a variable T-cell epitope that is fused to an αCD40 single chain variable fragment (scFv) with agonistic function to target and activate dendritic cells in vivo. To potentiate therapeutic efficacy, toll-like receptor (TLR) agonists can be attached as co-stimulatory domains, thereby aiming to enhance cross-presentation of conjugated (neo)antigens to CD8+ T cells.Materials and MethodsFlow cytometry and microscopy-based binding and internalization experiments were performed using monocyte-derived dendritic cells (moDCs). Upregulation of surface markers (CD80, CD83, CD86, HLA-DR) as well as cytokine secretion (IL-6 and IL-12) indicated DC maturation. To validate peptide processing and presentation, moDCs were co-cultured with autologous as well as allogeneic T cells. IFN-γ and TNF-α secretion served as a readout for T-cell activation, peptide-MHC multimer staining for T-cell proliferation.ResultsFor proof-of-principle experiments, the multispecific antibody derivative was developed by fusing the αCD40 scFv to a cytomegalovirus (CMV)-specific peptide. The αCD40.CMV construct bound CD40 agonistically and showed efficient internalization into early endosomal compartments on immature moDCs. In co-cultures of immature and mature moDCs with autologous or allogeneic T cells, αCD40.CMV induced a significantly increased T-cell activation and proliferation compared to the control. The co-administration of αCD40.CMV with various TLR agonists as vaccine adjuvants resulted in a significant upregulation of DC maturation markers in comparison to αCD40.CMV only. Interestingly, not all adjuvants were able to enhance the T-cell response. To translate this principle to the AML setting, the CMV peptide sequence was replaced with the ΔNPM1-derived and HLA-A*02:01-binding neoantigen CLAVEEVSL. Cross-presentation to CD8+ T cells transduced with a ΔNPM1-specific T-cell receptor was proven by IFN-γ and TNF-α secretion in co-cultures with moDCs that have been pre-incubated with αCD40.ΔNPM1. The optimal vaccine adjuvant has yet to be identified.ConclusionsWe successfully demonstrated the development of a multifunctional antibody construct that specifically targets and stimulates DCs by an agonistic αCD40 scFv. It simultaneously delivers a T cell-specific peptide with a vaccine adjuvant to induce an efficient T-cell response. As neoantigens are promising targets and under intense investigaton, the αCD40.ΔNPM1 fusion protein is of high therapeutic interest. Thus, our approach displays a promising DC vaccination option for the treatment of AML.Disclosure InformationS. Schmitt: None. A. Lohner: None. K. Deiser: None. A. Maiser: None. M. Rothe: None. C. Augsberger: None. A. Moosmann: None. H. Leonhardt: None. N. Fenn: None. M. Griffioen: None. K. Hopfner: None. M. Subklewe: None.


2020 ◽  
Author(s):  
Ying Ma ◽  
Kang Tang ◽  
Yusi Zhang ◽  
Chunmei Zhang ◽  
Linfeng Cheng ◽  
...  

Abstract Background: An effective vaccine that prevents disease caused by hantaviruses is a global public health priority, but up to now, no vaccine has been approved for worldwide use. Therefore, novel vaccines with high prophylaxis efficacy are urgently needed.Methods: Herein, we designed and synthesized Hantaan virus (HTNV) linear multi-epitope peptide consisting of HLA-A*02-restricted HTNV cytotoxic T cell (CTL) epitope and pan HLA-DR-binding epitope (PADRE), and evaluated the immunogenicity, as well as effectiveness, of multi-epitope peptides in HLA-A2.1/Kb transgenic mice with interferon (IFN)-γ enzyme-linked immunospot assay, cytotoxic mediator detection, proliferation assay and HTNV-challenge test.Results: The results showed that a much higher frequency of specific IFN-γ-secreting CTLs, high levels of granzyme B production, and a strong proliferation capacity of specific CTLs were observed in splenocytes of mice immunized with multi-epitope peptide than in those of a single CTL epitope. Moreover, pre-immunization of multi-epitope peptide could reduce the levels of HTNV RNA loads in the liver, spleen and kidneys of mice, indicating that specific CTL responses induced by multi-epitope peptide could reduce HTNV RNA loads in vivo.Conclusions: This study may provide an important foundation for the development of novel peptide vaccines for HTNV prophylaxis.


Sign in / Sign up

Export Citation Format

Share Document