scholarly journals Application of Plants Extracts as Green Corrosion Inhibitors for Steel in Concrete - A review

2018 ◽  
Vol 3 (2) ◽  
pp. 158 ◽  
Author(s):  
Yuli Panca Asmara ◽  
Tedi Kurniawan ◽  
Agus Geter Edy Sutjipto ◽  
Jamiluddin Jafar

High requirements in protection of steel reinforcing bar (steel rebar) from corrosion are necessary since there are multi interaction of corrosive chemicals which cause early damage of concrete buildings. Corrosion of steel in concrete can destroy the concretes and reduce concrete strength. To protect rebar from corrosion, application of corrosion inhibitor is believed to have higher performance compared to other protection systems. To date, organic inhibitors have promising methods in steel rebar protection as they are environment-friendly, compatible with concrete, cost effective and applicable in any various concrete conditions. Thus, demands in using these inhibitors tend to increase significantly. This paper reviews the applications of green corrosion inhibitor specifically highlighted in protecting mechanisms, typical plants extracted, performance in corrosion protection, and classification of green corrosion inhibitors. The corrosion resistances of carbon steels in concrete protected by green inhibitors are in focus. As summary, it can be confidently notified that green corrosion inhibitors for steel in concrete will have a prospect to be used as corrosion prevention in the future with further improvements.

2013 ◽  
Vol 357-360 ◽  
pp. 876-879
Author(s):  
Luboš Taranza ◽  
Rostislav Drochytka

Corrosion of steel constructions due to the affection of aggressive agents is one of the principal problems affecting reinforced concrete constructions. In critical cases, this phenomenon may cause static destabilisation of the construction and as a result, it is necessary to protect constructions using primary and secondary protection which significantly decreases this risk. This paper addresses the options for evaluating various types of protective anti-corrosion systems which use progressive corrosion inhibitor technology in a laboratory environment. Corrosion inhibitors efficiently slow down the course of corrosive processes on steel reinforcement and prolong the service life of building constructions. The rate of efficiency can be verified with high information capability in the laboratory by a series of testing methods.


2018 ◽  
Vol 929 ◽  
pp. 158-170
Author(s):  
Adam Septiyono Arlan ◽  
Norman Subekti ◽  
Johny Wahyuadi Soedarsono ◽  
Andi Rustandi

Acidizing is one of the stimulation technologies in the oil and gas industry by removing scale, rust, debris or other acid-soluble particulates on the pipe tubing internal surface. The most common acid used is HCl. To avoid problems such as pipe or casing tubing leak due to acidic corrosion, during the acidizing normally applied with inhibition treatment by inorganic corrosion inhibitor with various compositions including quaternary ammonium salts, solvent and often some surfactant to strip oil from acid reactive surfaces. However, most of these compounds are not only expensive but also toxic to the marine environment. It is an obvious remark to point out the importance of low cost, green corrosion inhibitors which is safe to the environment. The wood extract has become important as an environmentally acceptable, readily available and renewable resource for wide range of inhibitors. A Caesalpinia Sappan L modified imidazoline has been synthesized and used as a corrosion inhibitor for carbon steel in API 5L X60 in HCl 1M environment.The aim of the investigation is to find low dosage-high efficiency green corrosion inhibitor.The testing techniques include wheel test weight loss measurement, Tafel polarization and Electrochemical Impedance Spectroscopy (EIS), Fourier Transform Infra-red Spectroscopy (FTIR). The results of weight loss studies correlated well with those of polarization and Impedance Spectroscopy. Inhibition performance for both Caesalpinia Sappan L modified imidazoline ( CS IMI) and Imidazoline (IMI) increases with increasing inhibitor concentration. The formulated Caesalpinia Sappan L modified imidazoline ( CS IMI), and Imidazoline (IMI) inhibitors give a greater than 90% inhibition efficiency with dosage 25 ppm at a temperature of 90-140°F. Caesalpinia Sappan L modified imidazoline (CS IMI), and Imidazoline (IMI) show comparable inhibition performance. However, at temperature 140oF, Imidazoline (IMI) seems to have a slightly better performance, indicating better thermal stability. Caesalpinia sappan bioactive agents are brazilein and chalcone, and its inhibition mechanism by physisorption obey Langmuir Isotherm, this mode will control charge transfer at surface metal and electrolyte.This result confirms that Caesalpinia sappan modified imidazoline is very promising for the development of green corrosion inhibitors for oil and gas application


2021 ◽  

The book presents the current status of corrosion inhibitor technology. A special focus is placed on various types of green corrosion inhibitors and their applications.


Author(s):  
S. Kundu

The term ‘Corrosion’ is associated with the deterioration of materials. To get rid of this problem corrosion inhibitors are commonly used. Though many conventional corrosion inhibitors can efficiently reduce corrosion, their disposal often adversely affects the environment. However, there are many natural products that have the potential of reducing corrosion and they are referred to as green corrosion inhibitors. They are much safer to use and most importantly cost-effective. This chapter deals with the current development of the use of green corrosion inhibitors, their opportunities and challenges.


Author(s):  
B. Chugh

Green chemistry and sustainability encourages the significance of preserving the nature and individual’s wellbeing in cost effective way that intends to avoid toxicity and reduction of wastes. Therefore, the implication of green corrosion inhibitors in the field of concrete protection has also received immense attention these days. Indeed, the usage of such inhibitors is a well-known strategy for producing high performance concrete. In view of this, the present chapter discusses the research in the area of sustainable corrosion inhibitors for concrete assurance used commercially in various industries. It also highlights the concrete corrosion mechanisms and its protective measures, recent advances in this field.


Author(s):  
Dongfeng He

Corrosion of steel reinforcing bar (rebar) reduces the strength capacity of concrete, and also causes the crack of concrete due the volume increase of the corrosion products. Detection of corrosion at its early stage is important for the safety evaluation and repairment of the concrete structures. An electromagnetic induction method was developed to evaluate the corrosion of steel rebar. By measuring the electromagnetic response of steel rebar, it was possible to judge the corrosion of steel rebar in concrete. A small compact system, suitable for field experiments was also developed.


2021 ◽  
Author(s):  
María Guadalupe Valladares Cisneros ◽  
Adriana Rodríguez Torres ◽  
Alonso Saldaña-Hereida ◽  
David Osvaldo Salinas-Sánchez

Prunus persica (peach) is a delicious and juicy fruit, making a valuable and healthy food. P. persica is an interesting specie that have been studied in different ways, one of them is as green corrosion inhibitor to protect metals. From this specie, it has been studied as juice, seeds, pomace of fruit and leaves on alloy steels immersed in acids (HCl, H2SO4 and H3PO4) and salts (NaCl, Na2SO4). This chapter explains briefly global importance of corrosion, how corrosion occurs and how to protect metals with corrosion inhibitors, including examples about the studies of green corrosion inhibitors and the results of Prunus species. The phytochemicals mixture was extracted from different tissues of peach (leaves, fruits, seeds, peels, and pomace) through different methods. All these extracts were studied to protect steel alloys immersed in different aggressive environments (acids and salts) and showed good and high corrosion inhibitions using low quantities of phytoextract (0.5 g/L) as corrosion inhibitors reaching more than 87% of corrosion inhibition efficiencies. Leaves of P. persica containing flavonoids like fruits and is possible to use leaves or pomace to produce green corrosion inhibitors.


Green corrosion inhibitors used for protection of metals and alloys in electronic devices are a key interest area for researcher because of increased environmental awareness which restrict the use of toxic and hazardous corrosion inhibitors which contaminate our ecological system. Advancement of green chemical technologies towards novel vapor-phase corrosion inhibitors (VPCI) as green inhibitors for electronics corrosion and their adsorption mechanism is discussed in detail here. Also, the protective role of VPCI for various metals and alloys used in electronics components and industrial applications are discussed.


2016 ◽  
Vol 70 (9) ◽  
Author(s):  
Shi Mo ◽  
Hong-Qun Luo ◽  
Nian-Bing Li

AbstractIn recent years, plant extracts have become the focus of corrosion inhibitor research due to their low toxicity, easy availability and economical preparation. This review presents most of the recent contributions made to the application of plant extracts as corrosion inhibitors for steel in sulphuric acid, as well as in both hydrochloric acid and sulphuric acid. The constituents, properties, adsorption modes and inhibition mechanisms of these natural products are discussed. Evaluation methods and the factors that influence the corrosion-inhibition efficiency of plant extracts are also summarised.


Corrosion is an inevitable fact of day-to-day life, and however, because of its technological, economic, and aesthetic significance, it always receives much attention. Most of the corrosion inhibitors are environmentally harmful and toxic synthetic chemicals. In view of the toxicity of the inhibitors, the search for an eco-friendly and non-toxic corrosion inhibitor is of great interest. Green corrosion inhibitors are of concern because of increased awareness and improvements in regulations related to the environment because of their toxicity, restrict regular corrosion inhibitors. The extracts of natural products contain compounds having oxygen, carbon, nitrogen and sulfur. Such elements facilitate compounds to absorb on the surface of metal, forming a protective film to prevent corrosion. The main purpose of this chapter is to provide a comprehensive study of technological applications of green corrosion inhibitors in different industries, such as reinforced concrete, coating, aircraft, oil and gas, acid pickling, and water industry.


Sign in / Sign up

Export Citation Format

Share Document