scholarly journals Biosynthesis of Gold Nanoparticles (AuNPs) by Diopatra claparedii Grube, 1878 (Polychaeta: Onuphidae) and Its Antibacterial Activity

2021 ◽  
Vol 50 (5) ◽  
pp. 1309-1320
Author(s):  
Chong Huai Piong ◽  
Noor Aniza Harun ◽  
Angeline Ung Ee Pei ◽  
Mohammad Asyraf Adhwa Masimen ◽  
Wan Iryani Wan Ismail ◽  
...  

Gold nanoparticles (AuNPs) have gained attention as it possesses outstanding physicochemical properties, and utilised in variety of applications especially in biomedical and pharmaceutical. Majorly, AuNPs are produced by conventional methods (chemical and physical). However, these methods bring several drawbacks such as toxic, hazardous, low yield and non-environmental friendly. Hence, biosynthesis of AuNPs that compliance with ‘greener’ approach becomes vitals. In this study, marine tube worm of Diopatra claparedii (polychaetes) was employed as reducing agent in the biosynthesis of AuNPs. The biosynthesised of AuNPs by D. claparedii extract was successfully prepared under ambient temperature and normal atmospheric conditions. The formation of AuNPS was confirmed by the appearance of surface Plasmon resonance (SPR) bands around 540 to 560 nm characterized by UV-Vis spectroscopy. Scanning electron microscopy (SEM) showed that the AuNPs are mostly in agglomerated spherical like shapes with size ranging from 100 to 400 nm. Meanwhile, transmission electron microscopy (TEM) showed that the particles are in the size range from 25 to 60 nm, also mainly form in spherical like shape. The particle size of AuNPs in a range of 50-100 nm was showed by dynamic light scattering (DLS). Fourier-transform infrared (FTIR) spectrum of D. claparedii extract indicated the existence of several functional groups. Biosynthesised AuNPs also successfully gave inhibition on bacterial growth (Staphyloccus aureus, S. epidermidis, Escheratia coli, Salmonella typhi) through antibacterial assessment.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2937
Author(s):  
Muhammad Zulfajri ◽  
Wei-Jie Huang ◽  
Genin-Gary Huang ◽  
Hui-Fen Chen

The laser ablation synthesis in solution (LASiS) method has been widely utilized due to its significant prospects in laser microprocessing of nanomaterials. In this study, the LASiS method with the addition of different surfactant charges (cationic CTAB, nonionic TX-100, and anionic SDS) was used to produce Au NPs. An Nd:YAG laser system at 532 nm excitation with some synthetic parameters, including different laser fluences, ablation times, and surfactant concentrations was performed. The obtained Au NPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, and zeta potential analyzer. The Au NPs exhibited the maximum absorption peak at around 520 nm for all samples. The color of Au NPs was changed from red to reddish by increasing the laser fluence. The surfactant charges also played different roles in the Au NPs’ growth during the synthesis process. The average sizes of Au NPs were found to be 8.5 nm, 5.5 nm, and 15.5 nm with the medium containing CTAB, TX-100, and SDS, respectively. Besides, the different surfactant charges induced different performances to protect Au NPs from agglomeration. Overall, the SDS and CTAB surfactants exhibited higher stability of the Au NPs compared to the Au NPs with TX-100 surfactant.


2021 ◽  
Vol 19 (11) ◽  
pp. 66-71
Author(s):  
Maithm A. Obaid ◽  
Suha A Fadaam ◽  
Osama S. Hashim

The aim of this study is to prepare gold nanoparticles by a simple chemical method at a temperature of 70°C. The solution was dried on glass basest by Casting method, the rate of five drops per sample At a temperature 100 C. Then the structural and optical properties have been confirmed by X-ray diffraction, scanning electron microscopy (SEM) and Transmission Electron microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and spectrum.


Author(s):  
Is Fatimah ◽  
Putwi Widya Citradewi ◽  
Amri Yahya ◽  
Bambang Nugroho ◽  
Habibi Hidayat ◽  
...  

Abstract The composite of green synthesized gold nanoparticles (Au NPs)-doped hydroxyapatite (HA) has been prepared. The gold nanoparticles were produced via bioreduction of HAuCl4 with Clitoria ternatea flower extract, and utilized in the synthesis of hydroxyapatite using Ca(OH)2 and ammonium diphosphate as precursor. The aim of this research is to study the structural analysis of the composite and antibacterial activity test toward Eschericia coli, Staphylococcus aureus, Klebsiela pneumoniae, and Streptococcus pyogenes. In addition, the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. The monitoring of gold nanoparticles formation was conducted by UV–vis spectroscopy and particle size analyses, meanwhile the synthesized composite was studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that homogeneously dispersed gold nanoparticles in HA structure was obtained with the particle size ranging at 5-80 nm. The nanocomposite demonstrated antibacterial activity against tested bacteria. The nanocomposite expressed an antioxidant activity as shown by the DPPH scavenging activity of 66 and 58% at the concentration of 100 μg/mL and 50 μg/mL, respectively.


2016 ◽  
Vol 11 (2) ◽  
pp. 77
Author(s):  
Weon Bae Ko ◽  
Young Min Lee ◽  
Sung Kyu Hong ◽  
Sung Sook Choi ◽  
Sang Jin Lee

<p>This study examined the synthesis of gold nanoparticles using a non-ionic surfactant, polysorbate 80, and KAuCl<sub>4 </sub>in water. The gold nanoparticles, which were well dispersed in water, were analyzed by UV-vis spectroscopy and transmission electron microscopy (TEM). In addition, the SRY(sex-determining region Y) gene of the Bos taurus specific primer was designed, and this primer solution was mixed with the aqueous gold nanoparticles solution. The binding ability of DNA and gold nanoparticles was identified by polyacryllamide gel electrophoresis. The products of DNA linked with gold nanoparticles were also characterized by UV-vis spectroscopy and TEM.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Anish Stephen ◽  
Sankar Seethalakshmi

This paper is the first of its kind for development of rapid and ecofriendly method for synthesis of silver nanoparticles from aqueous solution of silver nitrate using the flavonoid “hesperidin” and optimization of the methodology. There is formation of stable spherical silver nanoparticles in the size range of 20–40 nm. Optimization of methodology in terms of concentration of reactants and pH of the reaction mixture reduced the reaction time for silver nanoparticle formation to 2 mins. Silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). UV-vis spectroscopy derived spectrum demonstrated a peak of 430 nm which corresponds to the plasmon absorbance of silver nanoparticles. Transmission electron microscopy revealed spherical shaped silver nanoparticles in the size range of 20–40 nm.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 74
Author(s):  
Tarek Abou Elmaaty ◽  
Khaled Sayed-Ahmed ◽  
Radwan Mohamed Ali ◽  
Kholoud El-Khodary ◽  
Shereen A. Abdeldayem

The development of antibacterial coatings for footwear components is of great interest both from an industry and consumer point of view. In this work, the leather material was developed taking advantage of the intrinsic antibacterial activity and coloring ability of selenium nanoparticles (SeNPs). The SeNPs were synthesized and implemented into the leather surface by using ultrasonic techniques to obtain simultaneous coloring and functionalization. The formation of SeNPs in the solutions was evaluated using UV/Vis spectroscopy and the morphology of the NPs was determined by transmission electron microscopy (TEM). The treated leather material (leather/SeNPs) was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The effects of SeNPs on the coloration and antibacterial properties of the leather material were evaluated. The results revealed that the NPs were mostly spherical in shape, regularly distributed, and closely anchored to the leather surface. The particle size distribution of SeNPs at concentrations of 25 mM and 50 mM was in the range of 36–77 nm and 41–149 nm, respectively. It was observed that leather/SeNPs exhibited a higher depth of shade compared to untreated ones, as well as excellent fastness properties. The results showed that leather/SeNPs can significantly enhance the antibacterial activity against model of bacteria, including Gram-positive bacteria (Bacillus cereus) and Gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhi and Escherichia coli). Moreover, the resulting leather exhibited low cytotoxicity against HFB4 cell lines. This achievement should be quite appealing to the footwear industry as a way to prevent the spread of bacterial infection promoted by humidity, poor breathability and temperature which promote the expansion of the microflora of the skin.


2012 ◽  
Vol 61 (1) ◽  
pp. 61-63 ◽  
Author(s):  
K.V. PAVANI ◽  
N. SUNIL KUMAR ◽  
B.B. SANGAMESWARAN

In the context of the current demand to develop green technologies in material synthesis, a natural process in the synthesis of lead particles by Aspergillus species to suit such technology is reported. The fungal strain was grown in medium containing different concentrations of lead (0.2-1.5 mM) to determine its resistance to heavy metals. The organism was found to utilize some mechanism and accumulate lead particles outside and inside the cell. The extracellular presence of lead particles in the range of 1.77-5.8 microm was characterized by scanning electron microscopy. The presence of particles of lead in the 5-20 nm size range was found on the cell surface, in the periplasmic space and in the cytoplasm and was analyzed by transmission electron microscopy.


2013 ◽  
Vol 652-654 ◽  
pp. 250-253
Author(s):  
Hua Nan Guan

An improvement in the previously reported seed-mediated chemical synthesis of gold nanorods (GNRs) is reported. Gold nanoparticles were prepared by reducing gold salt with a polysaccharide, chitosan, in the presence of tripolyphosphate (TPP). The obtained gold nanoparticles were characterized with UV-vis spectroscopy and transmission electron microscopy. The study shows that TPP plays an important role in the formation of GNRs.


2018 ◽  
Vol 55 (5B) ◽  
pp. 227
Author(s):  
Phan Ha Nu Diem

In this article, a simple method for the preparation of multi–branched gold nanoparticles from an aqueous solution of silver seeds, cetyl-trimethylammonium bromide (CTAB), HAuCl4, and Pluronic F–127 was described. It was found that morphologies and sizes of gold nanostructures (AuNPs) depended strongly on such experimental parameters as concentrations of Pluronic F–127 and Au3+. The products were characterized by transmission electron microscopy (TEM). Interestingly, the multi – branched AuNPs were found to serve as an effective catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4. Kinetic data have been obtained from monitoring the concentrations of 4-NP and BH4‒ by UV‒vis spectroscopy.


2019 ◽  
Vol 2 (2) ◽  
pp. 69-72
Author(s):  
László P. Biró ◽  
Krisztián Kertész ◽  
Gábor Piszter ◽  
Zsolt E. Horváth ◽  
Zsolt Bálint

Abstract The photonic nanoarchitectures occurring in the wing scales of Lycaenid butterflies were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-VIS spectroscopy. We found that the males of all the nine investigated species possess photonic nanoarchitectures built according to the same general “plan”, but each species exhibits species-specific features which results in species-specific colours reproduced generation by generation with a high degree of accuracy.


Sign in / Sign up

Export Citation Format

Share Document