Estimation of 100 nm particle distribution kinetics in mouse lung using confocal laser scanning microscopy
BACKGROUND: Daily, people inhale airborne viral particles, some of which have a size of about 100 nm, such as particles of SARS-CoV-2. Kinetics of such 100 nm particle distribution in the respiratory tract is important, however, not a properly investigated question. AIM: To estimate the dissemination of inert viral particles based on the analysis of the spatial distribution of fluorescent 100 nm particles in the mouse lungs at different time points after the application. MATHERIALS AND METHODS: Fluorescent particles of 100 nm size were applied to C57BL/6 mice. 6, 24, 48 and 72 hours after, lungs were excised and fixed. Lung lobes were stained with immunohistochemistry as whole-mounts and then underwent optical clearance. Three-dimensional images of whole-mount mouse lung lobes were acquired using confocal laser scanning microscopy. RESULTS: 6 hours after the particle application particles were detected in lungs both as single particles and as particle agglomerates. Particles were both free and internalized by phagocytic cells. 24 hours after the application particles were detected both in bronchial lumen and in the alveolar space. Particles were detected in the mouse lungs up to 72 hours after the application. CONCLUSIONS: Reaching the respiratory tract of mammalian, inert particles which size equal to SARS-CoV-2 particle size distribute both in bronchi and in alveoli and undergoes internalization of phagocytic cells.