The Cedar Mountain, Nevada, earthquake of December 20, 1932*

1934 ◽  
Vol 24 (4) ◽  
pp. 345-384 ◽  
Author(s):  
Vincent P. Gianella ◽  
Eugene Callaghan

Summary The Cedar Mountain, Nevada, earthquake took place at about 10h 10m 04s p.m., December 20, 1932. It was preceded by a foreshock noted locally and followed by thousands of aftershocks, which were reported as still continuing in January 1934. No lives were lost and there was very little damage. The earthquake originated in southwest central Nevada, east of Mina. A belt of rifts or faults in echelon lies in the valley between Gabbs Valley Range and Pilot Mountains on the west and Cedar Mountain and Paradise Range on the east. The length of this belt is thirty-eight miles in a northwesterly direction, and the width ranges from four to nine miles. The rifts consist of zones of fissures which commonly reveal vertical displacement and in a number of places show horizontal displacement. The length of the rifts ranges from a few hundred feet to nearly four miles, and the width may be as much as 400 feet. The actual as well as indicated horizontal displacement is represented by a relative southward movement of the east side of each rift. The echelon pattern of the rifts within the rift area indicates that the relative movement of the adjoining mountain masses is the same. The direction of relative horizontal movement corresponds to that along the east front of the Sierra Nevada at Owens Valley and on the San Andreas rift.

Author(s):  
Earl B. Alexander ◽  
Roger G. Coleman ◽  
Todd Keeler-Wolfe ◽  
Susan P. Harrison

The Sierra Motherlode domain is in a series of allochthonous terranes, sometimes called the “Foothill Belt,” along the western edge of the north-northwest–south-southeast trending Sierra Nevada, adjacent to the Great Valley of California. It is a discontinuous belt from the southern Sierra Nevada, in Tulare and Fresno counties, to Butte County in the northern Sierra Nevada , but a branch within the belt is practically continuous from El Dorado County about 140 km north to Plumas County at the north end of the range. Cenozoic block faulting has lifted the Sierra Nevada and tilted the mountain range toward the west; therefore the highest elevations are on the east side of the range. Uplift is more pronounced in the southern than in the northern Sierra Nevada. Altitudes range from <200 m adjacent to the Great Valley to more than 4000 m along the crest of the central to southern part of the mountain range. The highest altitudes in the Sierra Motherlode domain are 1939 m (6360 feet) on Red Mountain and 1935 m (6335 feet) on Red Hill in Plumas County, and even higher on some of the granitic plutons that are within the outer limits of the serpentine domain. These plutons were intruded into the allochthonous terranes after the terranes had been accreted onto the continent. Much of the western slope of the northern Sierra Nevada is an undulating to rolling plateau. This plateau is a remnant from the early Tertiary when its surface was deeply weathered to produce lateritic serpentine soils with silica deposited in the subsoils and in fractures in the bedrock (Rice and Cleveland 1955, Rice 1957). The ancient plateau was capped by volcanic flows that produced a practically continuous cover in the northern Sierra Nevada (Durrell 1966). Uplift along the eastern side of the northern part of the Sierra Nevada to initiate its current relief commenced 4 or 5 Ma ago (Wakabayashi and Sawyer 2001). Since the range began to rise a few million years ago, the larger streams flowing across it have cut deep canyons up to about 600 m below the plateau.


1961 ◽  
Vol 51 (4) ◽  
pp. 483-493
Author(s):  
Paul C. Bateman

Abstract Maps and photographs made by Willard D. Johnson in 1907 and published by W. H. Hobbs in 1910, together with unpublished illustrations and an incomplete manuscript by Johnson, show convincingly that the faulting that took place near the town of Lone Pine at the time of the Owens Valley earthquake of 1872 involved both dip-slip and right-lateral components of movement. The pattern of movement at Lone Pine in 1872 is opposed to the postulate of regionally systematic left-lateral movement along the east side of the Sierra Nevada during the Cenozoic, but does not prove systematic regional right-lateral movement. Detailed geologic mapping is needed to fully describe the regional pattern of movement during the Cenozoic.


Author(s):  
Wenjun Zheng ◽  
Haiyun Bi ◽  
Xulong Wang ◽  
Dongli Zhang ◽  
Rong Huang ◽  
...  

Abstract Surface-rupturing strong earthquakes will leave evidence distributed along fault zones. The combination of paleoearthquake trench excavation and faulted microgeomorphic analysis at the same site provides more comprehensive knowledge of paleoearthquakes than either method could accomplish alone. In this article, we report on our use of trench excavation and dating, together with a 5-cm resolution digital elevation model obtained from an unmanned aerial vehicle based on the structure from motion photogrammetry technology, to investigate the timing and size of strong paleoearthquake events in the Dashagou site near the west end of the Haiyuan fault, which ruptured in the 1920 Haiyuan earthquake. The result reveals that at least four strong paleoearthquake events with the same or even higher magnitude (including the 1920 Haiyuan earthquake) have occurred along the west end of the Haiyuan fault since the mid-Holocene. Event IV occurred shortly before 6.0 ka with a horizontal displacement of 4.27±1.50  m and a vertical displacement of 0.70±0.39  m. Event III occurred at approximately 4.65±0.45  ka with a horizontal displacement of 5.45±1.25  m and a vertical displacement of 0.38±0.23  m. Event II occurred at approximately 1.0 ka with a horizontal displacement of 3.86±0.90  m and a vertical displacement of 0.55±0.27  m. The most recent event was the 1920 Haiyuan earthquake, with a horizontal displacement of 2.15±0.82  m and a vertical displacement of 0.26±0.12  m. From the results of these four events, we can certainly conclude that the fault has mainly maintained the strike-slip kinematic pattern over the past 6 ka. These observations highlight the benefits of combining trench excavation and faulted microgeomorphology to gain a more complete understanding of paleoearthquakes.


Radiocarbon ◽  
1997 ◽  
Vol 39 (2) ◽  
pp. 121-137 ◽  
Author(s):  
R. Scott Anderson ◽  
Susan J. Smith ◽  
Peter A. Koehler

The number of paleoecological records for the Sierra Nevada of California has increased substantially since the compilation of Adam (1985). We examine here the geographical and temporal distribution of records within the range in order to identify areas for which “gaps” exist in our paleoecological knowledge. Seventy-two sites with paleoecological information are identified; these sites are dated with 234 radiocarbon dates. Sites occur primarily between ca. 36°N and 38°30'N latitudes, and from ca. 1000 m to over 3000 m elevation on both sides of the Sierran crest, although more sites have been analyzed on the west side of the crest than the east side. In general, packrat (Neotoma) midden series are located at the lowest elevations, meadow and marsh cores originate from mid-elevations, and lake sediments have been analyzed from the highest elevations. Significant gaps in our knowledge occur for much of the east side of the crest, for both sides of the range above modern treeline, and for time periods older than the latest Pleistocene.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Toshifumi Nogawa ◽  
Masayasu Saito ◽  
Naomichi Murashima ◽  
Yoshiyuki Takayama ◽  
Atsuro Yokoyama

Abstract Background Implant-supported removable partial dentures (ISRPDs) are an effective treatment for partially edentulous patients. ISRPDs improve patients’ satisfaction and oral function to a greater extent than RPDs by improving denture stability and enhancing support. However, the effect of a type of direct retainer on displacement of the abutment teeth and dentures in ISRPDs remains unclear. Therefore, we made a resin mandibular model of unilateral mandibular distal-extension partial edentulism for mechanical simulation and compared the dynamic behavior of the abutment teeth and the denture base among different tooth-borne retainers with various rigidities for RPDs and ISRPDs. Methods A resin mandibular model for mechanical simulation that had unilateral mandibular distal-extension edentulism and was missing the first molar, second molar, first premolar, and second premolar, and a denture fabricated from the patient’s computed tomography images were used. Three types of direct retainers with different connecting rigidities were evaluated. The vertical displacement of the denture base and buccal and lingual sides and the mesial displacement of the abutment teeth were measured. Results Regardless of the rigidity of the direct retainers and loading positions, the displacement of the denture bases in the ISRPDs was significantly smaller than that in the RPDs (P < 0.001). There was no significant difference in vertical displacement of the denture bases among direct retainers with various connecting rigidities in the ISRPDs. Conversely, horizontal displacement of the abutment teeth in both the RPDs and ISRPDs tended to be larger with the cone crown telescope, which has high rigidity, than with the cast cingulum rest and wire clasp, which have much lower rigidities. Conclusion Our results suggested that cast cingulum rest and wire clasps as direct retainers are appropriate ISRPDs to minimize denture movement and suppress displacement of the remaining teeth in patients with unilateral mandibular distal-extension partial edentulism.


1971 ◽  
Vol 61 (5) ◽  
pp. 1413-1432 ◽  
Author(s):  
Frank J. Gumper ◽  
Christopher Scholz

abstract Microseismicity, composite focal-mechanism solutions, and previously-published focal parameter data are used to determine the current tectonic activity of the prominent zone of seismicity in western Nevada and eastern California, termed the Nevada Seismic Zone. The microseismicity substantially agrees with the historic seismicity and delineates a narrow, major zone of activity that extends from Owens Valley, California, north past Dixie Valley, Nevada. Focal parameters indicate that a regional pattern of NW-SE tension exists for the western Basin and Range and is now producing crustal extension within the Nevada Seismic Zone. An eastward shift of the seismic zone along the Excelsior Mountains and left-lateral strike-slip faulting determined from a composite focal mechanism indicate transform-type faulting between Mono Lake and Pilot Mountain. Based on these results and other data, it is suggested that the Nevada Seismic Zone is caused by the interaction of a westward flow of mantle material beneath the Basin and Range Province with the boundary of the Sierra Nevada batholith.


1980 ◽  
Vol 70 (5) ◽  
pp. 1557-1572
Author(s):  
J. D. VanWormer ◽  
Alan S. Ryall

abstract Precise epicentral determinations based on local network recordings are compared with mapped faults and volcanic features in the western Great Basin. This region is structurally and seismically complex, and seismogenic processes vary within it. In the area north of the rupture zone of the 1872 Owens Valley earthquake, dispersed clusters of epicenters agree with a shatter zone of faults that extend the 1872 breaks to the north and northwest. An area of frequent earthquake swarms east of Mono Lake is characterized by northeast-striking faults and a crustal low-velocity zone; seismicity in this area appears to be related to volcanic processes that produced thick Pliocene basalt flows in the Adobe Hills and minor historic activity in Mono Lake. In the Garfield Hills between Walker Lake and the Excelsior Mountains, there is some clustering of epicenters along a north-trending zone that does not correlate with major Cenozoic structures. In an area west of Walker Lake, low seismicity supports a previous suggestion by Gilbert and Reynolds (1973) that deformation in that area has been primarily by folding and not by faulting. To the north, clusters of earthquakes are observed at both ends of a 70-km-long fault zone that forms the eastern boundary of the Sierra Nevada from Markleeville to Reno. Clusters of events also appear at both ends of the Dog Valley Fault in the Sierra west of Reno, and at Virginia City to the east. Fault-plane solutions for the belt in which major earthquakes have occurred in Nevada during the historic period (from Pleasant Valley in the north to the Excelsior Mountains on the California-Nevada Border) correspond to normaloblique slip and are similar to that found by Romney (1957) for the 1954 Fairview Peak shock. However, mechanisms of recent moderate earthquakes within the SNGBZ are related to right- or left-lateral slip, respectively, on nearly vertical, northwest-, or northeast-striking planes. These mechanisms are explained by a block faulting model of the SNGBZ in which the main fault segments trend north, have normal-oblique slip, and are offset or terminated by northwest-trending strike-slip faults. This is supported by the observation that seismicity during the period of observation has been concentrated at places where major faults terminate or intersect. Anomalous temporal variations, consisting of a general decrease in seismicity in the southern part of the SNGBZ from October 1977 to September 1978, followed by a burst of moderate earthquakes that has continued for more than 18 months, is suggestive of a pattern that several authors have identified as precursory to large earthquakes. The 1977 to 1979 variations are particularly noteworthy because they occurred over the entire SNGBZ, indicating a regional rather than local cause for the observed changes.


2021 ◽  
Vol 11 (16) ◽  
pp. 7577
Author(s):  
Lin Wu ◽  
Xiedong Zhang ◽  
Wei Wang ◽  
Xiancong Meng ◽  
Hong Guo

Train vibration from closely aligned adjacent tunnels could cause safety concerns, especially given the soaring size of the tunnel diameter. This paper established a two-dimensional discrete element model (DEM) of small (d = 6.2 m) and super-large (D = 15.2 m) diameter cross-river twin tunnels and discussed the dynamic characteristics of adjacent tunnels during the vibration of a train that runs through the tunnel at a speed of 120 km/h. Results in the D tunnel showed that the horizontal walls have the same horizontal displacement (DH) and the vertical walls have the same vertical displacement (DV). The stress state of the surroundings of the D tunnel is the decisive factor for DH, and the distance from the vibration point to the measurement point is the decisive factor for DV. Results in the comparison of the d and D tunnels showed that the D tunnel is more stable than the d tunnel with respect to two aspects: the time the tunnel reaches the equilibrium state and the vibration amplitude of the structure’s dynamic and static responses. The dynamic characteristic of the d and D tunnel is significantly different. This research is expected to guide the design and construction of large diameter twin tunnels.


2019 ◽  
Vol 16 (33) ◽  
pp. 630-640
Author(s):  
C. M. DÍEZ ◽  
C. J. SOLANO

The atmosphere system is ruled by the interaction of many meteorological parameters, causing a dependency between them, i.e., moisture and temperature, both suitable in front of any anomaly, such as storms, hurricanes, El Niño-Southern Oscillation (ENSO) events. So, understanding perturbations of the variation of moistness along the time may provide an indicator of any oceanographic phenomenon. Annual relative humidity data around the Equatorial line of the Pacific Ocean were processed and analyzed to comprehend the time evolution of each dataset, appreciate anomalies, trends, histograms, and propose a way to predict anomalous episodes such ENSO events, observing abnormality of lag correlation coefficients between every pair of buoys. Datasets were taken from the Tropical Atmosphere Ocean / Triangle Trans-Ocean Network (TAO/TRITON) project, array directed by Pacific Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA), and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). All the datasets were processed, and the code was elaborated by the author or adapted from Mathworks Inc. Even occurrences of relative humidity in the east side of the Pacific Ocean seem to oscillate harmonically, while occurrences in the west side, do not, because of the size of their amplitudes of oscillations. This fact can be seen in the histograms that show Peak shapes in the east side of the ocean, and Gaussians in the west; lag correlation functions show that no one pair of buoys synchronize fluctuations, but western buoys are affected in front of ENSO events, especially between 1997-98. Definitely, lag correlations in western buoys are determined to detect ENSO events.


Sign in / Sign up

Export Citation Format

Share Document