Variability of Hubble’s Parameter, Geomagnetic Activity, and Putative Changes in Space-Mass Density: Implications for Terrestrial Cell Growth
The quotient for Planck’s Length divided by the product of Hubble’s parameter and twice the width of the Compton wave length for a proton has been considered a critical increment for the time required for a proton to expand one Planck’s Length. The empirical time of 3.25 ms, found in magnetic field effectiveness for multiple physical and biochemical reactions, requires a local Hubble constant (H) of 58 km·s-1·MPar-1 with a resulting mass density of 0.14 protons per cubic meter. This mass density multiplied by the cube of the galactic orbital velocity is within error measurement of the background photon flux density measured locally by photomultiplier units over the last four years. Regression analyses for the weak positive correlation between Huchra’s annual fluctuations in H and global annual geomagnetic activity over the last 30 years indicated that every 1 nT increase was associated with 0.44 km·s-1·MPar-1 increase in H. The required average density is equivalent to that of the rest mass of the electron. The results and quantitative solutions indicate that the measurement of H is affected by geomagnetic activity and that the time for a proton to expand 1 Planck’s Length can vary over time. Unless earth-based reactions from exposures to pulsed or “quantum well” like magnetic fields that depend upon resonant precision with this value are adjusted appropriately their efficacy could vary significantly.