Investigation of Mechanical Properties of Epoxy EPON 862 Cured With TETA by Molecular Dynamics

Author(s):  
Ashwini Kumar Rai ◽  
Amit Porwal ◽  
S. B. Mishra

Molecular dynamics (MD) simulations were conducted to estimate the material properties of the cross-linked epoxy resin compound. A periodic amorphous structure of the cross-linked epoxy resin compound was constructed and it was simulated by continuous accumulation of structure configurations at various temperatures. Based on the simulation results, glass transition temperature (Tg), linear thermal expansion coefficients and Young's modulus of the cross-linked epoxy resin compound were predicted. The predicted values of these material properties are in good agreement with the experimental values in the literature.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1711
Author(s):  
Mohamed Ahmed Khaireh ◽  
Marie Angot ◽  
Clara Cilindre ◽  
Gérard Liger-Belair ◽  
David A. Bonhommeau

The diffusion of carbon dioxide (CO2) and ethanol (EtOH) is a fundamental transport process behind the formation and growth of CO2 bubbles in sparkling beverages and the release of organoleptic compounds at the liquid free surface. In the present study, CO2 and EtOH diffusion coefficients are computed from molecular dynamics (MD) simulations and compared with experimental values derived from the Stokes-Einstein (SE) relation on the basis of viscometry experiments and hydrodynamic radii deduced from former nuclear magnetic resonance (NMR) measurements. These diffusion coefficients steadily increase with temperature and decrease as the concentration of ethanol rises. The agreement between theory and experiment is suitable for CO2. Theoretical EtOH diffusion coefficients tend to overestimate slightly experimental values, although the agreement can be improved by changing the hydrodynamic radius used to evaluate experimental diffusion coefficients. This apparent disagreement should not rely on limitations of the MD simulations nor on the approximations made to evaluate theoretical diffusion coefficients. Improvement of the molecular models, as well as additional NMR measurements on sparkling beverages at several temperatures and ethanol concentrations, would help solve this issue.


2015 ◽  
Vol 817 ◽  
pp. 797-802 ◽  
Author(s):  
Cai Jiang ◽  
Jian Wei Zhang ◽  
Shao Feng Lin ◽  
Su Ju ◽  
Da Zhi Jiang

Molecular dynamics (MD) simulations on three single walled carbon nanotube (SWCNT) reinforced epoxy resin composites were conducted to study the influence of SWCNT type on the glass transition temperature (Tg) of the composites. The composite matrix is cross-linked epoxy resin based on the epoxy monomers bisphenol A diglycidyl ether (DGEBA) cured by diaminodiphenylmethane (DDM). MD simulations of NPT (constant number of particles, constant pressure and constant temperature) dynamics were carried out to obtain density as a function of temperature for each composite system. The Tg was determined as the temperature corresponding to the discontinuity of plot slopes of the densityvsthe temperature. In order to understand the motion of polymer chain segments above and below the Tg, various energy components and the MSD at various temperatures of the composites were investigated and their roles played in the glass transition process were analyzed. The results show that the Tg of the composites increases with increasing aspect ratio of the embedded SWCNT


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 319 ◽  
Author(s):  
Shahin Mohammad Nejad ◽  
Silvia Nedea ◽  
Arjan Frijns ◽  
David Smeulders

Molecular dynamics (MD) simulations are conducted to determine energy and momentum accommodation coefficients at the interface between rarefied gas and solid walls. The MD simulation setup consists of two parallel walls, and of inert gas confined between them. Different mixing rules, as well as existing ab-initio computations combined with interatomic Lennard-Jones potentials were employed in MD simulations to investigate the corresponding effects of gas-surface interaction strength on accommodation coefficients for Argon and Helium gases on a gold surface. Comparing the obtained MD results for accommodation coefficients with empirical and numerical values in the literature revealed that the interaction potential based on ab-initio calculations is the most reliable one for computing accommodation coefficients. Finally, it is shown that gas–gas interactions in the two parallel walls approach led to an enhancement in computed accommodation coefficients compared to the molecular beam approach. The values for the two parallel walls approach are also closer to the experimental values.


2014 ◽  
Vol 28 (23) ◽  
pp. 1450155 ◽  
Author(s):  
P. H. Kien ◽  
M. T. Lan ◽  
N. T. Dung ◽  
P. K. Hung

Annealing study of amorphous bulk and nanoparticle iron at temperatures from 500 K to 1000 K has been carried out using molecular dynamics (MD) simulations. The simulation is performed for models containing 104 particles Fe at both crystalline and amorphous states. We determine changes of the potential energy, pair radial distribution function (PRDF) and distribution of coordination number (DCN) as a function of annealing time. The calculation shows that the aging slightly reduces the potential energy of system. This result evidences that the amorphous sample undergoes different quasi-equilibrated states during annealing. Similar trend is observed for nanoparticles sample. When the samples are annealed at high temperatures we observe the crystallization in both bulk and nanoparticle. In particular, the system undergoes three stages. At first stage the relaxation proceeds slowly so that the energy of system slightly decreases and the samples structure remains amorphous. Within second stage a structural transformation occurs which significantly changes PRDF and DCN for the relatively short time. The energy of the system is dropped considerably and the amorphous structure transforms into the crystalline. Finally, the crystalline sample undergoes the slow relaxation which reduces the energy of system and eliminates structural defects in crystal lattices.


Author(s):  
Masoud Darbandi ◽  
Rasoul Khaledi-Alidusti ◽  
Majid Abbaspour ◽  
Hossein Reza Abbasi ◽  
Moslem Sabouri ◽  
...  

The nonequilibrium molecular dynamics (NEMD) simulations are performed to calculation the cross drag over a nanotube located in a uniform liquid argon flow. As is known, the behavior of fluid flows in nano-scale sizes is very different from that in microscopic and macroscopic sizes. In this work, our concern is on the flow of argon molecules over a nanotube which occurs in nanoscale sizes. We calculate the cross drag enforced the nanotube at Re≤1.0. In this regard, we use the molecular dynamics and simulate the flow of argon molecules over (6,0), (8,0) and (10,0) nanotubes. The simulations are performed at different velocities and the cross drag coefficient is computed at different Reynolds numbers. To improve the efficiency of simulations, we use USHER algorithm and examin the insertion of molecules at the end of the simulation box, the argon molecules are located out of box. Using the power trend line, we derived a formula, which approximates the cross drag of chosen nanotube. In all simulations, only the first two and the last two rings of the nanotube are frozen. All non-bonded interactions are calculated based on the Lennard-Jones potential. The results if molecular dynamics are compared with two empirical expressions provided by experiments performed on the flow over a macro-scale cylinder. The results show that the cross drag force on a single-walled nanotube calculated from MD simulations is larger than that provided by the empirical expressions in slow flows (Re≪ 1.0). As is expected the results of continuum flow calculations cannot be trusted to predict the drag of a nanotubes if Re≪1.0. The difference increases as the flow velocity decreases.


2019 ◽  
Vol 33 (10) ◽  
pp. 1950088 ◽  
Author(s):  
Xiandai Cui ◽  
Jiaoqun Zhu ◽  
Hong Xu ◽  
Xiaomin Cheng ◽  
Weibing Zhou

Thermophysical properties of phase change material NaCl and KCl were calculated using molecular dynamics (MD) simulations and a recent EIM interatomic potential. Density, thermal expansion coefficient, specific heat capacity were computed using equilibrium MD (EMD) simulations. The results are very close to the experimental values. The thermal conductivity was computed using two non-equilibrium MD (NEMD) methods and the results were compared with the experimental data. They appear to be relatively reasonable. Binary NaCl/KCl systems have also been investigated. The specific heat capacity with different compositions are calculated. They are very close with recent experimental results.


2006 ◽  
Vol 05 (01) ◽  
pp. 131-144 ◽  
Author(s):  
JIHUA GOU ◽  
BIN FAN ◽  
GANGBING SONG ◽  
AURANGZEB KHAN

In the processing of carbon nanotube/polymer composites, the interactions between the nanotube and polymer matrix will occur at the molecular level. Understanding their interactions before curing is crucial for nanocomposites processing. In this study, molecular dynamics (MD) simulations were employed to reveal molecular interactions between (10, 10) single-walled nanotube and two kinds of epoxy resin systems. The two kinds of resin systems were EPON 862/EPI-CURE W curing agent (DETDA) and DGEBA (diglycidylether of bisphenol A)diethylenetriamine (DETA) curing agent. The MD simulation results show that the EPON 862, DETDA and DGEBA molecules had strong attractive interactions with single-walled nanotubes and their molecules changed their conformation to align their aromatic rings parallel to the nanotube surface due to π-stacking effect, whereas the DETA molecule had a repulsive interaction with the single-walled nanotubes. The interaction energies of the molecular systems were also calculated. Furthermore, an affinity index (AI) of the average distance between the atoms of the resin molecule and nanotube surface was defined to quantify the affinities between the nanotubes and resin molecules. The MD simulation results show that the EPON 862/EPI-CURE W curing agent system has good affinities with single-walled nanotubes.


2016 ◽  
Author(s):  
Lucia Sessa ◽  
Luigi Di BIasi ◽  
Rosaura Parisi ◽  
Simona Concilio ◽  
Stefano Piotto

Motivation Molecular docking is an efficient method to predict the conformations adopted by the ligand within the target binding site. Usually, standard docking protocol involves only one structure to represent the receptor, overlooking the changes in the binding pocket geometry induced by ligand binding. In our previous work, we observed that different conformations of the same target show different volume and shape of the internal cavities (Sessa et al., 2016). Different ligands may stabilize different receptor conformations with different internal cavities. Consequently, the crystallographic data represent the adaptation of a protein to a particular ligand. Cross-docking is a validation procedure consisting in docking a series of ligands into different conformation of the same receptor. Since the structures of the same receptor can be rather different, the cross-docking analyses are typically very poor. In these cases the internal cavity of the buried binding pocket does not have space enough to accommodate all ligands and this can radically affect the outcome and alter the cross-docking results. The changes of the cavity volume might explain the failure of traditional docking method and support the hypothesis that a single representative structure for the receptor is not enough. Keeping target proteins flexible during the docking has a high computational cost. To overcome this limit, our docking strategy is to represent receptor flexibility through an inexpensive method that generates a series of target structures. Starting from a known target structure, we used the molecular dynamics (MD) simulations to explore the conformational changes induced by ligand binding and to collect several snapshots of receptor structures to perform the cross-docking studies. To validate the accuracy of our flexible protocol in docking, we used a set of 10 crystallographic conformations of Androgen Receptor with the same target but with a different ligand. We performed two parallel experiments of docking, one with a rigid protein target and one considering flexible receptor structures. In addition, we compared the results for both experiments in the re-docking and in the cross-docking analysis. Methods Ten receptor structures complexed with a ligand were extracted from the X-ray structures in the PDB database (Berman et al., 2000). Several conformations for each receptor were selected from the molecular dynamics simulations (MD) at regular time intervals (each 500 ps). The MD simulations were performed with the software YASARA Structure 16.2.14 (Krieger & Vriend, 2014) using AMBER14 as force field. The molecular docking simulations were performed using VINA provided in the YASARA package. "Abstract truncated at 3,000 characters - the full version is available in the pdf file"


2016 ◽  
Author(s):  
Lucia Sessa ◽  
Luigi Di BIasi ◽  
Rosaura Parisi ◽  
Simona Concilio ◽  
Stefano Piotto

Motivation Molecular docking is an efficient method to predict the conformations adopted by the ligand within the target binding site. Usually, standard docking protocol involves only one structure to represent the receptor, overlooking the changes in the binding pocket geometry induced by ligand binding. In our previous work, we observed that different conformations of the same target show different volume and shape of the internal cavities (Sessa et al., 2016). Different ligands may stabilize different receptor conformations with different internal cavities. Consequently, the crystallographic data represent the adaptation of a protein to a particular ligand. Cross-docking is a validation procedure consisting in docking a series of ligands into different conformation of the same receptor. Since the structures of the same receptor can be rather different, the cross-docking analyses are typically very poor. In these cases the internal cavity of the buried binding pocket does not have space enough to accommodate all ligands and this can radically affect the outcome and alter the cross-docking results. The changes of the cavity volume might explain the failure of traditional docking method and support the hypothesis that a single representative structure for the receptor is not enough. Keeping target proteins flexible during the docking has a high computational cost. To overcome this limit, our docking strategy is to represent receptor flexibility through an inexpensive method that generates a series of target structures. Starting from a known target structure, we used the molecular dynamics (MD) simulations to explore the conformational changes induced by ligand binding and to collect several snapshots of receptor structures to perform the cross-docking studies. To validate the accuracy of our flexible protocol in docking, we used a set of 10 crystallographic conformations of Androgen Receptor with the same target but with a different ligand. We performed two parallel experiments of docking, one with a rigid protein target and one considering flexible receptor structures. In addition, we compared the results for both experiments in the re-docking and in the cross-docking analysis. Methods Ten receptor structures complexed with a ligand were extracted from the X-ray structures in the PDB database (Berman et al., 2000). Several conformations for each receptor were selected from the molecular dynamics simulations (MD) at regular time intervals (each 500 ps). The MD simulations were performed with the software YASARA Structure 16.2.14 (Krieger & Vriend, 2014) using AMBER14 as force field. The molecular docking simulations were performed using VINA provided in the YASARA package. "Abstract truncated at 3,000 characters - the full version is available in the pdf file"


Sign in / Sign up

Export Citation Format

Share Document