Analysis of phosphatidylcholines alterations in human glioblastoma multiform tissues ex vivo

2021 ◽  
Vol 67 (1) ◽  
pp. 81-87
Author(s):  
S.I. Pekov ◽  
A.A. Sorokin ◽  
A.A. Kuzin ◽  
K.V. Bocharov ◽  
D.S. Bormotov ◽  
...  

Significant metabolism alteration is accompanying the cell malignization process. Energy metabolism disturbance leads to the activation of de novo synthesis and beta-oxidation processes of lipids and fatty acids in a cancer cell, which becomes an indicator of pathological processes inside the cell. The majority of studies dealing with lipid metabolism alterations in glial tumors are performed using the cell lines in vitro or animal models. However, such conditions do not entirely represent the physiological conditions of cell growth or possible cells natural variability. This work presents the results of the data obtained by applying ambient mass spectrometry to human glioblastoma multiform tissues. By analyzing a relatively large cohort of primary and secondary glioblastoma samples, we identify the alterations in cells lipid composition, which accompanied the development of grade IV brain tumors. We demonstrate that primary glioblastomas, as well as ones developed from astrocytomas, are enriched with mono- and diunsaturated phosphatidylcholines (PC 26:1, 30:2, 32:1, 32:2, 34:1, 34:2). Simultaneously, the saturated and polyunsaturated phosphatidylcholines and phosphatidylethanolamines decrease. These alterations are obviously linked to the availability of the polyunsaturated fatty acids and activation of the de novo lipid synthesis and beta-oxidation pathways under the anaerobic conditions in the tumor core.

2021 ◽  
pp. 2004252
Author(s):  
Pauline Esteves ◽  
Landry Blanc ◽  
Alexis Celle ◽  
Isabelle Dupin ◽  
Elise Maurat ◽  
...  

BackgroundBronchial smooth muscle (BSM) remodelling in asthma is related to an increased mitochondrial biogenesis and enhanced BSM cell proliferation in asthma. Since (i) mitochondria produce the highest levels of cellular energy and (ii) fatty acid beta-oxidation is the most powerful way to produce ATP, we hypothesized that, in asthmatic BSM cells, energetic metabolism is shifted towards the beta-oxidation of fatty acids.ObjectivesWe aimed to characterize BSM cell metabolism in asthma both in vitro and ex vivo to identify a novel target for reducing BSM cell proliferation.MethodsTwenty-one asthmatic and 31 non-asthmatic patients were enrolled. We used metabolomic and proteomic approaches to study BSM cells. Oxidative stress, ATP synthesis, fatty acid endocytosis, metabolite production, metabolic capabilities, mitochondrial networks, cell proliferation and apoptosis were assessed on BSM cells. Fatty acid content was assessed in vivo using MALDI-spectrometry imaging.ResultsAsthmatic BSM cells were characterized by an increased rate of mitochondrial respiration with a stimulated ATP production and mitochondrial β-oxidation. Fatty acid consumption was increased in asthmatic BSM both in vitro and ex vivo. Proteome remodelling of asthmatic BSM occurred via 2 canonical mitochondrial pathways. The levels of CPT2 and LDL-receptor, which internalize fatty acids through mitochondrial and cell membranes, respectively, were both increased in asthmatic BSM cells. Blocking CPT2 or LDL-receptor drastically and specifically reduced asthmatic BSM cell proliferation.ConclusionThis study demonstrates a metabolic switch towards mitochondrial beta-oxidation in asthmatic BSM and identifies fatty acid metabolism as a new key target to reduce BSM remodelling in asthma.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheena Dass ◽  
Serena Shunmugam ◽  
Laurence Berry ◽  
Christophe-Sebastien Arnold ◽  
Nicholas J. Katris ◽  
...  

AbstractApicomplexa are obligate intracellular parasites responsible for major human diseases. Their intracellular survival relies on intense lipid synthesis, which fuels membrane biogenesis. Parasite lipids are generated as an essential combination of fatty acids scavenged from the host and de novo synthesized within the parasite apicoplast. The molecular and metabolic mechanisms allowing regulation and channeling of these fatty acid fluxes for intracellular parasite survival are currently unknown. Here, we identify an essential phosphatidic acid phosphatase in Toxoplasma gondii, TgLIPIN, as the central metabolic nexus responsible for controlled lipid synthesis sustaining parasite development. Lipidomics reveal that TgLIPIN controls the synthesis of diacylglycerol and levels of phosphatidic acid that regulates the fine balance of lipids between storage and membrane biogenesis. Using fluxomic approaches, we uncover the first parasite host-scavenged lipidome and show that TgLIPIN prevents parasite death by ‘lipotoxicity’ through effective channeling of host-scavenged fatty acids to storage triacylglycerols and membrane phospholipids.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A950-A950
Author(s):  
Mara De Martino ◽  
Camille Daviaud ◽  
Claire Vanpouille-Box

BackgroundGlioblastoma (GBM) is the most aggressive and incurable adult brain tumor. Radiation therapy (RT) is an essential modality for GBM treatment and is recognized to stimulate anti-tumor immunity by inducing immunogenic cell death (ICD) subsequent to endoplasmic reticulum (ER) stress. However, RT also exacerbates potent immunosuppressive mechanisms that facilitate immune evasion. Notably, increased de novo lipid synthesis by the fatty acid synthase (FASN) is emerging as a mechanism of therapy resistance and immune escape. Here, we hypothesize that RT induces FASN to promote GBM survival and evade immune recognition by inhibiting ER stress and ICD.MethodsTo determine if lipid synthesis is altered in response to RT, we first assessed FASN expression by western blot (WB) and lipid accumulation by BODIPY staining in murine (CT2A and GL261) and human (U118) GBM cell lines. Next, FASN expression was blocked in CT2A cells using CRISPR-Cas9 or an inducible shRNA directed against Fasn to evaluate ICD and ER stress markers by ELISA, WB, and electron microscopy. Finally, CT2AshFASN cells or its non-silencing control (CT2AshNS) were orthotopically implanted and FASN knockdown was induced by feeding the mice with doxycycline. The immune contexture was determined by in situ immunofluorescence (n=3/group). Remaining mice were followed for survival (n=7/group).ResultsWe found that in vitro irradiation of GBM cells induces lipid accumulation in a dose-dependent fashion; an effect that is magnified over time lasting at least 6/7 days. Consistent with these findings, FASN expression was upregulated in irradiated GBM cells. Confirming the role of FASN, RT-induced accumulation of lipids was reverted when GBM cells were incubated with a FASN inhibitor. Next, we found that FASN ablation in CT2A cells induces mitochondria disruption and was sufficient to increase the expression of the ER stress makers BIP and CHOP. Along similar lines, shFASN enhances the secretion of the ICD markers HMGB1, IFN-beta and CXCL10 in irradiated CT2A cells. In vivo, CT2AshFASN tumors presented increased infiltration of CD11c+ cells and CD8+ T cells, consistent with prolonged mice survival (56 days vs. 28 days for CT2AshNS). Importantly, 43% of CT2AshFASN-bearing mice remained tumor-free for more than 70 days, while none of the CT2AshNS-bearing mice survived.ConclusionsAltogether, our data suggest that FASN-mediated lipid synthesis is an important mechanism to prevent ER stress, ICD, and anti-tumor immune responses in GBM. While much work remains to be done, our data propose FASN as a novel therapeutic target to overcome immunosuppression and sensitize GBM to immunotherapies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Vijendra Kumar Suryawanshi ◽  
Khomendra Kumar Sarwa ◽  
Suhas Narayan Sakarkar ◽  
Chanchal Deep Kaur

Background: Rosuvastatin calcium is a statin class of drug having limited oral bioavailability of about 20%. This problem might be overcome by making the biform complex using cow ghee fraction as a bioavailability enhancer. Methods: A precise thermal fractionation technique was adopted to separate different fatty acids from cow ghee. Collected fractions were subjected to characterization over parameters reported for fatty acids. LC-MS and FTIR confirm the content variation in the collected fraction. Biform complex was prepared by fusion method with a constant ratio of drug and cow ghee fraction. The prepared complex was subjected to FTIR, DSC, and LC-MS study to confirm chemical composition characteristics. Drug content, in-vitro and ex-vivo permeation studies were also performed. The anti-inflammatory response was measured using the carrageenan paw-induced edema rat model. Lipid-lowering effect and inflammation marker analysis was also performed using ELISA specific kit. Results: The biform complex prepared with a thermal fraction at 30ºC of cow ghee show the highest in-vitro and ex-vivo permeation. The anti-inflammation response of the biform complex F1 was higher than other tested formulations with considerable lipid and lipoprotein lowering properties. Conclusions: This study confirms that the thermal fractionation method abled to separate cow ghee as per their fatty acid content. The complexion of rosuvastatin calcium with cow ghee thermal fraction enhances oral bioavailability followed by the anti-inflammatory and lipid-lowering activity.


1963 ◽  
Vol 41 (1) ◽  
pp. 1267-1274
Author(s):  
Peter F. Hall ◽  
Edward E. Nishizawa ◽  
Kristen B. Eik-Nes

The fatty acids palmitic, palmitoleic, stearic, and oleic have been isolated from rabbit testis and evidence for the synthesis of palmitic and stearic acids de novo from acetate-1-C14is presented. ICSH did not produce demonstrable stimulation of the synthesis of these acids in vitro although the hormone stimulated the production of testosterone-C14by the same tissue. Adrenal tissue was shown to contain palmitic, stearic, and oleic acids, and ACTH did not increase the incorporation of acetate-1-C14into a fatty acid fraction extracted following incubation of adrenal tissue in the presence of this substrate. Fatty acid biosynthesis, therefore, is probably not influenced by the mechanisms by which tropic hormones increase steroid formation.


2020 ◽  
Vol 61 (8) ◽  
pp. 1221-1231 ◽  
Author(s):  
Yasuhiro Horibata ◽  
Hiromi Ando ◽  
Hiroyuki Sugimoto

The final step of the CDP-ethanolamine pathway is catalyzed by ethanolamine phosphotransferase 1 (EPT1) and choline/EPT1 (CEPT1). These enzymes are likely involved in the transfer of ethanolamine phosphate from CDP-ethanolamine to lipid acceptors such as 1,2-diacylglycerol (DAG) for PE production and 1-alkyl-2-acyl-glycerol (AAG) for the generation of 1-alkyl-2-acyl-glycerophosphoethanolamine. Here, we investigated the intracellular location and contribution to ethanolamine phospholipid (EP) biosynthesis of EPT1 and CEPT1 in HEK293 cells. Immunohistochemical analyses revealed that EPT1 localizes to the Golgi apparatus and CEPT1 to the ER. We created EPT1-, CEPT1-, and EPTI-CEPT1-deficient cells, and labeling of these cells with radio- or deuterium-labeled ethanolamine disclosed that EPT1 is more important for the de novo biosynthesis of 1-alkenyl-2-acyl-glycerophosphoethanolamine than is CEPT1. EPT1 also contributed to the synthesis of PE species containing the fatty acids 36:1, 36:4, 38:5, 38:4, 38:3, 40:6, 40:5, and 40:4. In contrast, CEPT1 was important for PE formation from shorter fatty acids such as 32:2, 32:1, 34:2, and 34:1. Brefeldin A treatment did not significantly affect the levels of the different PE species, indicating that the subcellular localization of the two enzymes is not responsible for their substrate preferences. In vitro enzymatic analysis revealed that EPT1 prefers AAG 16–20:4 > DAG 18:0–20:4 > DAG 16:0–18:1 = AAG 16–18:1 as lipid acceptors and that CEPT1 greatly prefers DAG 16:0–18:1 to other acceptors. These results suggest that EPT1 and CEPT1 differ in organelle location and are responsible for the biosynthesis of distinct EP species.


1981 ◽  
Vol 36 (1-2) ◽  
pp. 62-70 ◽  
Author(s):  
Margrit Bertrams ◽  
Käthe Wrage ◽  
Ernst Heinz

Abstract De novo-synthesis of glycerolipids in chloroplasts is initiated by a stroma enzyme which catalyzes the formation of lyso-phosphatidic acid from glycerophosphate and acyl-CoA. When these substrates are added to isolated, intact chloroplasts, only glycerophosphate can readily pass through the chloroplast envelope which represents a permeation barrier for acyl-CoA, although higher thioester concentrations destroy this membrane system. At low concentrations of acyl-CoA, which do not impair the envelope, intact chloroplasts metabolize exogenous acyl-CoA in two ways to give free fatty acids and labelled phosphatidyl choline. This indicates that the envelope thioesterase can use exogenous substrates. Isolated, intact chloroplasts fixing radioactive CO2 label free fatty acids and acylglycerols but not galactolipids, since they cannot convert 3-phosphoglycerate into UDP-galactose which in vivo is supplied by the cytoplasm. This cooperation was simulated in vitro by adding all enzymes and cofactors necessary for conversion of 3-phosphoglycerate into UDP-galactose to intact chloro­plasts which then formed labelled monogalactosyl diacylglycerol from labelled CO2. The time required to transfer envelope-made galactolipids from the envelope into thylakoids was studied by incubating intact chloroplasts with radioactive UDP-galactose, subsequent osmotic disruption of organelles with concomitant enzymatic degradation of UDP-galactose followed by separation of envelopes and thylakoids. Only after short times (< 1min) appreciable proportions 920-30%) of radioactive galactolipid export from envelopes into thylakoids.


2018 ◽  
Vol 5 (12) ◽  
pp. 181483 ◽  
Author(s):  
Lauren E. Jamieson ◽  
Angela Li ◽  
Karen Faulds ◽  
Duncan Graham

Raman spectroscopy has been used extensively for the analysis of biological samples in vitro , ex vivo and in vivo . While important progress has been made towards using this analytical technique in clinical applications, there is a limit to how much chemically specific information can be extracted from a spectrum of a biological sample, which consists of multiple overlapping peaks from a large number of species in any particular sample. In an attempt to elucidate more specific information regarding individual biochemical species, as opposed to very broad assignments by species class, we propose a bottom-up approach beginning with a detailed analysis of pure biochemical components. Here, we demonstrate a simple ratiometric approach applied to fatty acids, a subsection of the lipid class, to allow the key structural features, in particular degree of saturation and chain length, to be predicted. This is proposed as a starting point for allowing more chemically and species-specific information to be elucidated from the highly multiplexed spectrum of multiple overlapping signals found in a real biological sample. The power of simple ratiometric analysis is also demonstrated by comparing the prediction of degree of unsaturation in food oil samples using ratiometric and multivariate analysis techniques which could be used for food oil authentication.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4495-4495
Author(s):  
Aram Prokop ◽  
Banu Bagci ◽  
Guenaelle Lingfeld ◽  
Lucia Badiali ◽  
Karin Garbrecht ◽  
...  

Abstract Anthracyclines, especially daunorubicin, play a very important role in the treatment of acute lymphoblastic leukemia (ALL) and the relapsed ALL in childhood. In the present study, primary lymphoblasts isolated from 65 children with de novo ALL (median: 5.8 years; range: 1.9 – 16.9 years) and relapsed ALL (median: 12.7 years; range: 1.3 – 17.9 years) were treated with daunorubicin (10 mmol/l) or idarubicin (2 mmol/l) in vitro. We could show that both anthracylines induce apoptosis, as evidenced by measurement of genomic DNA fragmentation. Interestingly, daunorubicin only induced modest apoptosis, whereas idarubicin displayed a significantly stronger apoptosis inducing effect. Furthermore the treatment of daunorubicin-resistant lymphoblasts with idarubicin resulted in good response in most of the resistant cell populations. Out of the 65 patients analysed in this study 23 were female (13 de novo ALL, 10 relapsed ALL) and 42 were male (29 de novo ALL, 13 relapsed ALL). Primary lymphoblasts were obtained by bone marrow aspiration and separated by centrifugation over Ficoll. Within these cell populations following immunologic subgroups were found: 35 c-ALL, 10 pre-B-ALL, 7 pro-B-ALL, 10 T-ALL and 3 pre-T-ALL. Daunorubicin induced apoptosis in 33 out of 65 lymphoblast populations (response rate 50.8 %). Nevertheless, a far higher response rate was observed for idarubicin with 59/65 (90,8 %) (p < 0.008), if response is defined as apoptosis induction higher than 1 %. Daunorubicin-resistance was found in 32/65 (49,2 %), resistance to both was observed in 6/65 (9,2 %). Treatment of daunorubicin-resistant lymphoblasts with idarubicin resulted in significant apoptosis induction in 26 out of 32 cell populations (81,3 %). We clearly demonstrated here that the in vitro treatment of lymphoblasts from children with de novo or relapsed ALL with idarubicin induces significantly higher response rates than daunorubicin treatment. The ex vivo sensitivity of daunorubicin-resistant lymphoblasts of childhood ALL to idarubicin treatment reflects the better potency of idarubicin to induce apoptosis and to overcome daunorubicin resistance. These data prompted us to study the clinical relevance of idarubicin in ongoing clinical trials to improve existing therapeutic regiments. First clinical data point to a good tolerability of idarubicin in the treatment of relapsed ALL in childhood.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Ying Yang ◽  
Jiaxing He ◽  
Bo Zhang ◽  
Zhansheng Zhang ◽  
Guozhan Jia ◽  
...  

AbstractAbnormal lipid metabolism has been commonly observed in various human cancers, including colorectal cancer (CRC). The mitochondrial citrate carrier SLC25A1 (also known as mitochondrial citrate/isocitrate carrier, CIC), has been shown to play an important role in lipid metabolism regulation. Our bioinformatics analysis indicated that SLC25A1 was markedly upregulated in CRC. However, the role of SLC25A1 in the pathogenesis and aberrant lipid metabolism in CRC remain unexplored. Here, we found that SLC25A1 expression was significantly increased in tumor samples of CRC as compared with paired normal samples, which is associated with poor survival in patients with CRC. Knockdown of SLC25A1 significantly inhibited the growth of CRC cells by suppressing the progression of the G1/S cell cycle and inducing cell apoptosis both in vitro and in vivo, whereas SLC25A1 overexpression suppressed the malignant phenotype. Additionally, we demonstrated that SLC25A1 reprogrammed energy metabolism to promote CRC progression through two mechanisms. Under normal conditions, SLC25A1 increased de novo lipid synthesis to promote CRC growth. During metabolic stress, SLC25A1 increased oxidative phosphorylation (OXPHOS) to protect protects CRC cells from energy stress-induced cell apoptosis. Collectively, SLC25A1 plays a pivotal role in the promotion of CRC growth and survival by reprogramming energy metabolism. It could be exploited as a novel diagnostic marker and therapeutic target in CRC.


Sign in / Sign up

Export Citation Format

Share Document