scholarly journals Spongy Structures Coated with Carbon Nanomaterials for Efficient Oil/Water Separation

2017 ◽  
Vol 19 (2) ◽  
pp. 127 ◽  
Author(s):  
Fail Sultanov ◽  
B. Bakbolat ◽  
Zulkhair Mansurov ◽  
Shin-Shem Pei ◽  
Rabi Ebrahim ◽  
...  

Rapid progress of processing and transportation of oil and petroleum products may cause disaster for environment like oil spill. Oil booms, combustion, and oil skimmer vessels are usually used to clean up the oil spill, but often with poor efficiency and even with undesirable environmental side effects. With obtaining of carbon nanomaterials (CNMs) (graphene, carbon nanotubes) and developing inexpensive technologies for their synthesis it has become perspective to use them for creation of 3D structures which may serve as a hydrophobic sorbents for oil and petroleum products. In this study, sponges coated with carbon nanomaterials were obtained using “dip-coating” method. Walls of commercially available polyurethane (PU) and melamine sponges were coated with reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs). The resulting sponges are characterized by excellent mechanical properties, they are superhydprophobic, and they fully repel water and at the same time selectively absorb oil and organic liquids of different densities. We believe that superhydrophobic and superoleophilic sponges, the walls of which are coated with CNMs, are perspective candidates for reusable sorbents for collection of oil and petroleum products from the surface of water and moreover due to its excellent mechanical properties they can serve as a hydrophobic filtering materials for separation of oil from the surface of water.

2016 ◽  
Vol 18 (4) ◽  
pp. 251
Author(s):  
Zulkhair Mansurov

The paper reviews recent scientific developments at the Institute of Combustion Problems. The hydrophobic sponges were obtained by coating polyurethane and melamine sponges with carbon nanomaterials. They are excellent water-resistant sorbents for oil, petroleum products and other organic liquids of various densities. Another interesting development is concerned to the synthesis of multiwalled carbon nanotubes on a glass-cloth by use of cobalt oxide catalyst nanoparticles obtained by solution combustion and production of the smart-textile on its basis. A model of soldier with heated jacket based on electroconductive smart-textile was made. The textile showed good electroconductive properties and effective Joule heating by externally applied current. Studies on the development of nanostructured carbon materials and their application as high-performance active components for the electrodes of advanced energy storage systems, in particular electric double layer capacitors were carried out. 2D heterostructures based on graphene nd dichalcogenides of transition metals were derived. The epitaxial and single crystals of graphene were synthesized by the CVD-method separately on a copper foil. Two dimension WS2 layers were synthesized using sulfurization of thin WO3 films deposited by thermal evaporating on the FTO substrate. A setting time of concrete mass, which could be used as a construction material for 3D printing technology was determined. It was found that calcium chloride decreased the setting time up to 10 min, which is sufficient for the intended application.


2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

2002 ◽  
Vol 17 (9) ◽  
pp. 2457-2464 ◽  
Author(s):  
Yafei Zhang ◽  
Mikka N.-Gamo ◽  
Kiyoharu Nakagawa ◽  
Toshihiro Ando

A simple and novel method was developed for efficient synthesis of aligned multiwalled carbon nanotubes (CNTs) in methanol and ethanol under normal pressure. The CNTs' alignment and structures were investigated using Raman scattering and x-ray diffraction spectroscopy. A unique kind of coupled CNT was synthesized in which one rotated to the left and one rotated to the right. Chains periodically bridged the coupled CNTs. The growth mechanism of the CNTs within organic liquid is proposed to be a catalytic process at the Fe film surface in a dynamic and thermal nonequilibrium condition in organic liquids.


2003 ◽  
Vol 791 ◽  
Author(s):  
P. C. Ramamurthy ◽  
W. R. Harrell ◽  
R. V. Gregory ◽  
B. Sadanadan ◽  
A. M. Rao

ABSTRACTHigh molecular weight polyaniline / multi-walled carbon nanotube composite films were fabricated using solution processing. Composite films with various weight percentages of multiwalled carbon nanotubes were fabricated. Physical properties of these composites were analyzed by thermogravimetric analysis, tensile testing, and scanning electron microscopy. These results indicate that the addition of multiwalled nanotubes to polyaniline significantly enhances the mechanical properties of the films. In addition, metal–semiconductor (composite) (MS) contact devices were fabricated, and it was observed that the current level in the films increased with increasing multiwalled nanotube content. Furthermore, it was observed that polyaniline containing one weight percent of carbon nanotubes appears to be the most promising composition for applications in organic electronic devices.


2011 ◽  
Vol 528 (13-14) ◽  
pp. 4318-4324 ◽  
Author(s):  
Marcos N. dos Santos ◽  
Carlos V. Opelt ◽  
Fernando H. Lafratta ◽  
Carlos M. Lepienski ◽  
Sérgio H. Pezzin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document