DESIGN OF TUNABLE METHOD OF PID CONTROLLER FOR INTEGRATING PROCESS

Author(s):  
J. Nivetha ◽  
◽  
V.Vijayan S.Devakumar ◽  
C.Selvakumar R.C.Panda
2018 ◽  
Vol 249 ◽  
pp. 03007
Author(s):  
Haitao Sun ◽  
Mohannad Jabbar Mnati ◽  
Mohamed N. Ibrahim ◽  
Alex Van den Bossche

A proportional integral derivative (PID) controller is the most commonly used in integrating process, where the time delay is inevitable. In order to tune a PID controller, several factors should be taken into account such as time delay, mathematic model and the feedback signals. Some existed tuning methods failed to obtain the correct parameters with all the factors. The proposed tuning method presents some formulas, which considers all the factors. The proposed tuning method is also tested by practical circuit, which proved that the method can be applied for several cases, especially for the inductor current control.


2020 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
GunBaek So

The integrating process with time delay (IPTD) is a fundamentally unstable open-loop system due to poles at the origin of the transfer function, and designing controllers with satisfactory control performance is very difficult because of the associated time delay, which is a nonlinear element. Therefore, this study focuses on the design of an intelligent proportional-integral-derivative (PID) controller to improve the regulatory response performance to disturbance in an IPTD, and addresses problems related to optimally tuning each parameter of the controller with a real coded genetic algorithm (RCGA). Each gain of the nonlinear PID (NPID) controller consists of a product of the gains of the linear PID controller and a simple nonlinear function. Each of these nonlinear functions changes the gains in the controller to on line by nonlinearly scaling the error signal. A lead-lag compensator or first-order filter is also added to the controller to mitigate noise, which is a disadvantage of ideal derivative action. The parameters in the controller are optimally tuned by minimizing the integral of time-weighted absolute error (ITAE) using a RCGA. The proposed method is compared with three other methods through simulation to verify its effectiveness.


2015 ◽  
Vol 26 (5) ◽  
pp. 466-475 ◽  
Author(s):  
Gopi Krishna Rao Panyam Vuppu ◽  
Subramanyam Makam Venkata ◽  
Satyaprasad Kodati

2019 ◽  
Vol 139 (4) ◽  
pp. 356-363
Author(s):  
Yoichiro Ashida ◽  
Shin Wakitani ◽  
Toru Yamamoto

Sign in / Sign up

Export Citation Format

Share Document