The most extreme aero-thermo-dynamic conditions encountered in aerospace applications include those of atmospheric re-entry, characterized by hypersonic Mach numbers, high temperatures and a chemically reacting environment, and of rocket propulsion, in which a combusting, high-pressure, supersonic flow can severely attack the surfaces of the motor internal components (particularly nozzle throats), leading to thermo-chemical erosion and consequent thrust decrease. For these applications, Ultra-High-Temperature Ceramics (UHTC), namely transition metal borides and carbides, are regarded as promising candidates, due to their excellent high-temperature properties, including oxidation and ablation resistance, which are boosted by the introduction of secondary phases, such as silicon carbide and carbon fibers reinforcement (in the so-called Ultra-High- Temperature Ceramic Matrix Composites, UHTCMC). The recent European H2020 C3HARME research project was devoted to development and characterization of new-class UHTCMCs for near-zero ablation thermal protection systems for re-entry vehicles and near-zero erosion rocket nozzles. Within the frame of the project and in collaboration with several research institutions and private companies, research activities at the University of Naples “Federico II” (UNINA) focused on requirements definition, prototypes design and test conditions identification, with the aim to increase the Technology Readiness Level (TRL) of UHTCMC up to 6. Experimental tests were performed with two facilities: an arc-jet plasma wind tunnel, where small specimens were characterized in a relevant atmospheric re-entry environment (Fig.1a), and a lab-scale hybrid rocket engine, where material testing was performed with different setups, up to complete nozzle tests, in conditions representative of real propulsive applications (Fig.1b). The characterization of the aero-thermo-chemical response and ablation resistance of different UHTCMC formulations was supported by numerical computations of fluiddynamic flowfields and materials thermal behavior. The UNINA activities provided a large database supporting the achievement of the project objectives, with development and testing of full-scale TPS assemblies and a large-size solid rocket nozzle.