Technologia i parametry techniczne pracy instalacji przemysłowej do produkcji plastyfikatora TDAE

2021 ◽  
Author(s):  
Stefan Ptak

Crude oil is and will continue to be in the near future the basic natural economic resource in the world. The use of products derived from crude oil is the driving force of the economy in every country. Many products, semi-finished products, and raw materials are obtained from the processing of crude oil and used in many industries, including the petrochemical industry. Petroleum plasticisers play an important role in this area of the country’s economy as a softening additive in the vulcanisation of rubbers, especially synthetic styrene-butadiene rubber (SBR), and as a component of rubber compounds in their production and vulcanisation. The development of petroleum plasticisers for the rubber industry is determined by many documents and laws, as well as a number of requirements resulting from the nature of the production and operating conditions of rubber products. In particular, they must: • have the chemical composition required for a given combination and have appropriate physicochemical properties, • exhibit compatibility with the selected rubber, • demonstrate low volatility during the processes of rubber production, rubber compound production, and vulcanisation, and • not show any toxic effects. Petroleum plasticisers used in rubber compositions (SBR) are also called filler oils, which consist of hydrocarbon particles containing from 25 to 35 carbon atoms and are divided into aromatic, naphthenic, and paraffinic types depending on the proportion of carbons in the structures the aromatic, naphthenic and paraffin. An important role in the experimental research of this dissertation is played by highly aromatic plasticisers, a by-product of refining solvents of vacuum distillates from crude oil in the production of base oils, which have gained a lot of significance in the production of car tyres. DAE highly aromatic plasticisers have the highest content of aromatic hydrocarbons and the associated high content of polycyclic aromatic compounds and benzo[a]pyrene. The European Union’s introduction of EU Directive 76/769/EEC and Regulation 1907/2006 was aimed at reducing the content of polycyclic aromatic hydrocarbons (PAH) in tyres, which led to the oil industry’s production of petroleum plastics with low PAH content using various production processes to meet the needs of the global tyre industry. After DAE plasticisers were banned due to their mutagenic and carcinogenic activity, the global plasticisers market in 2010 created the REACH system in the European Union. Caused the adoption by the European Parliament and the Council on December 18, 2006, Regulation No. 1907/2006 in on registration, evaluation, authorization and related restrictions on chemicals, introducing provision 27 to Directive 76/769/EEC of the amendment to prohibit the use of highly aromatic extracts exceeding the limit for polycyclic aromatic hydrocarbon content. The experimental part contains the results of research on the development and industrial-scale implementation of TDAE plasticiser production technology that meets the requirements for carcinogenicity and mutagenicity. An important stage of experimental research is the technological industrial trials concerning the TDAE plasticiser tests carried out on the Furfurol installation in the production plant of ORLEN OIL Sp. z.o.o. in Płock, Poland. The main justification of the purpose and theses of the work are the investigations of selective solvent refining of heavy extracts in terms of the production of TDAE aromatic plasticisers meeting the requirements of EU Regulation 1907/2006. As a result of the work, it is possible to introduce into the production cycle, in addition to the base oils, a TDAE plasticiser with the trade name Elasticol, on the oil block of PKN ORLEN S.A. Another important element of the experimental research is the use of a solvent dewaxing process to obtain various TDAE plasticisers. The process of solvent dewaxing with various solvents allowed for the development of production technology of a modified TDAE plasticiser that meets the quality requirements of EU Regulation 1907/2006 with the potential for improving its low-temperature properties. In addition, the author has registered this technology in the Patent Office under the common title, Manufacture of a modified TDAE plasticiser intended for the production of caoutchouc and rubber, especially car tyres. Due to the broad knowledge of the interdisciplinary, extensive scope of the work, its conclusions were grouped into general, detailed, methodological, and perspective.

2019 ◽  
Author(s):  
Temidayo O Elufisan ◽  
Isabel C Rodríguez-Luna ◽  
Omotayo O Oyedara ◽  
Alejandro Sánchez-Varela ◽  
Armando Hernandez Mendoza ◽  
...  

Background: Stenotrophomonas are ubiquitous gram-negative bacteria which survive in a wide range of environments. They can use many substances for their growth and are known to be intrinsically resistant to many antimicrobial agents. They have been tested for biotechnological applications, bioremediation and antimicrobial agents because of their recalcitrant nature to many toxic compounds. Method. Stenotrophomonas sp. Pemsol was isolated from a crude oil contaminated soil. The capability of this isolate to tolerate and degrade polycyclic aromatic hydrocarbons (PAHs) (anthracene, anthraquinone, biphenyl, naphthalene, phenanthrene, phenanthridine and xylene) was evaluated on Bush Nell Hass medium containing PAHs as the unique carbon sources. The metabolites formed after 30-day degradation of naphthalene by Pemsol were analyzed using Fourier Transform Infra-red Spectroscopic (FTIR), Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). Results. Complete degradation of naphthalene at a concentration of 1 mg/mL was obtained and a newly formed catechol peak obtained from the UPLC-MS and GC-MS confirmed the degradation. The strain Pemsol lacked the ability to produce biosurfactant so that it cannot bio-emulsify PAHs. The whole genome analysis of Stenotrophomonas sp. Pemsol revealed a wealth of genes for hydrocarbon utilization and interaction with the environment and the presence of 147 genes associated with the degradation of PAHs, some of which are strain-specific on the genomic islands. Few genes are associated with bio-emulsification indicated that Pemsol without biosurfactant production has a genetic basis. This is the first report of the complete genome analysis sequence of a PAH-degrading Stenotrophomonas. Stenotrophomonas sp. Pemsol possesses features that makes it a good bacterium for genetic engineering and will therefore be a good tool for the remediation of crude oil or PAH-contaminated soil.


Author(s):  
Oleg K. Garishin ◽  
◽  
Anton Y. Beliaev ◽  

The work is devoted to the study of nanocomposites based on synthetic (styrene-butadiene) rubber with different fillers not previously used. The issue of using composites with alternative fillers is being investigated. The results of experimental testing and analysis of thermo-visco-elastic behav-ior of styrene-butadiene rubbers filled by various mineral particles of micro and nanosize, as well as pyrolysis products of organic food waste, are presented. The filled elastomers discussed in this work are mainly used in the tire industry to improve the performance of tires. All samples were tested on a dynamo-mechanical analyzer (DMA). Temperature and frequency dependences of the dynamic modulus and loss modulus are plotted for each of the composites. The frequency charac-teristics corresponded to the real range of rotation speeds of the car wheel, and the temperature var-ied from –50 to +50ºC. A comparative analysis of the results obtained was carried out. The struc-tural mechanisms of the filler are not investigated. It is assumed that the principles of operation of the investigated fillers at the structural level are similar to those described in many works for clas-sical fillers. Based on the test results a conclusion about the preferable operating conditions for the considered materials was made.


2018 ◽  
Vol 20 (3) ◽  
pp. 465-470

<p>In this study, the potential use of Azolla filiculoides Lam. for the bioremediative solution to polycyclic aromatic hydrocarbon (PAH) pollution due to crude oil spills in freshwater was investigated. The plants were grown in nitrogen-free Hoagland nutrient solution media containing 0.05%, 0.1%, 0.2%, 0.3%, 0.4% and 0.5% crude oil by volume for 15 days under greenhouse conditions. Relative growth rates of A. filiculoides decreased in the presence of crude oil in a concentration-dependent manner. The probable influence of A. filiculoides on the biodegradation of polycyclic aromatic hydrocarbons was measured by using synchronous UV fluorescence spectroscopy. GC-MS analysis were also carried out to elucidate the behavior of the oil in experimental and control samples. Although 1-2 rings PAHs have not been encountered in control or plant samples, the measured intensity for 3-4 ring PAHs in plant samples was remarkably lower in comparison to the control. Furthermore, these results demonstrated that the predominant efficacy of the A. filiculoides was for 3-4 ring PAHs at the range 0.05 to 0.2% crude oil concentrations. It could be concluded that the bioremediative potential of A. filiculoides for the removal of polycyclic aromatic hydrocarbons strongly depends on the amount of oil in the contaminated water resource. In other words, A. filiculoides could be used more effectively after the removal of excess crude oil in the spilled freshwater areas.</p>


2020 ◽  
Vol 95 (5) ◽  
pp. 1569-1579 ◽  
Author(s):  
Linda Obi ◽  
Harrison Atagana ◽  
Rasheed Adeleke ◽  
Mphekgo Maila ◽  
Emomotimi Bamuza‐Pemu

Sign in / Sign up

Export Citation Format

Share Document