base oils
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 72)

H-INDEX

20
(FIVE YEARS 4)

Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Seyed Ali Khalafvandi ◽  
Muhammad Ali Pazokian ◽  
Ehsan Fathollahi

Four commercial viscosity index improvers (VII) have been used to investigate the behavioral differences of these compounds in three types of universally applicable base oils. The used VIIs are structurally three types of co-polymer: ethylene-propylene, star isoprene, and two di-block styrene-isoprene. After dissolving of different amounts of VIIs in different base oils, the kinematic viscosities at two standard temperatures were determined and the intrinsic viscosities were calculated according to Huggins method, then the effects of changes in base oil and polymer type were investigated. Intrinsic viscosities as criteria for polymer molecules sizes were found to be higher at lower temperature than at higher temperature. Dependence of intrinsic viscosity on the polymer molecular weight was observed. In the previous works, one or two types of VIIs were studied in only one type of base oil and/or solvent, not different base oils. Furthermore, different ranges of temperatures and concentrations not necessarily applied ranges were selected, but in this work, common base oils and most commercial VIIs were used and the viscometric properties were compared at two temperatures. Viscosities at these temperatures are used for determining VI and definition of lubricant’s viscosity grades. VI improvement is the main cause of VII usage.


Lubricants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Andreas Conrad ◽  
Annika Hodapp ◽  
Bernhard Hochstein ◽  
Norbert Willenbacher ◽  
Karl-Heinz Jacob

This study investigates crystallization, melting and glass transition of Li- and Ca-12-hydroxystearate greases in relation to the pour point of the corresponding oils. The base oils for the greases are mineral oil, polyalphaolefin, alkylated naphthalene, propylene glycol, and trimellitate. For the mineral oil-based greases the crystallization temperature Tc increases and the melting temperature Tm decreases upon addition of thickener. The pour point of the mineral oil then is 3 K below Tc and does not properly define the lowest application temperature for mineral oil (MO) based greases. Both thickeners induce a small increase of the glass transition temperature (1–3 K) of the synthetic oils polyalphaolefin, alkylated naphthalene, propylene glycol. The pour point of the base oils correlates well with the onset of the glass transition in the corresponding grease indicated by a sharp increase in grease viscosity. Pure trimellitate with unbranched alkyl chains does not crystallize upon cooling but shows noticeable supercooling and cold crystallization. As the percentage of thickener in corresponding greases increases, more oil crystallizes upon cooling 20 K above the crystallization temperature of the trimellitate without thickener (−44 °C). Here, the thickener changes the crystallization behavior from homogeneous to heterogeneous and thus acts as a crystallization nucleus. The pour point of the base oil does not provide information on the temperature below which the greases stiffen significantly due to crystallization.


2021 ◽  
pp. 39-43

The purpose of the study is to increase the efficiency of using used engine oils as a dispersion medium for plastic lubricants. It has been established that the removal of resins, carbenes, carbides and asphaltenes from used synthetic motor oils makes it possible to obtain an oil base close to commercial base oils in terms of basic characteristics; refined oils also have a high margin of operational properties. The composition of lubricants for analogues of Lithol-24 and Solidol-Z based on refined used engine oils has been determined. Anticorrosive, adhesive and strength properties of lubricant compositions are considered.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7206
Author(s):  
Rehan Zahid ◽  
Muhammad Usman Bhutta ◽  
Riaz Ahmad Mufti ◽  
Muhammad Usman Abdullah ◽  
Haji Hassan Masjuki ◽  
...  

The environmental concerns associated with artificially formulated engine oils have forced a shift towards bio-based lubricants. The deposition of hard coatings on engine components and migrating to environmentally friendly green lubricants can help in this regard. Chemically modified forms of vegetable oils, with better low-temperature characteristics and enhanced thermo-oxidative stability, are suitable substitutes to conventional lubricant base oils. The research presented in this manuscript was undertaken to experimentally investigate the wear and friction performance of a possible future generation of an environmentally friendly bio-based lubricant as a potential replacement for conventional engine lubricants. In order to quantify the tribological benefits which can be gained by the deposition of DLC coatings, (an (a-C:H) hydrogenated DLC coating and an (a-C:H:W) tungsten-doped DLC coating) were applied on the cam/tappet interface of a direct acting valve train assembly of an internal combustion engine. The tribological correlation between DLC-coated engine components, lubricant base oils and lubricant additives have been thoroughly investigated in this study using actual engine operating conditions. Two additive-free base oils (polyalphaolefines (PAO) and chemically-modified palm oil (TMP)) and two multi-additive-containing lubricants were used in this investigation. Real-time drive torque was measured to determine the friction force, detailed post-test analysis was performed, which involved the use of a specialized jig to measure camlobe wear. An optical profilometer was used to measure the wear on the tappet, high-resolution scanning electron microscopy was employed to study the wear mechanism and energy-dispersive X-ray spectroscopy was performed on the tested samples to qualitatively access the degradation of the coating. When using additive-free TMP, a low friction coefficient was observed for the cam/tappet interface. The presence of additives further improved the friction characteristics of TMP, resulting in reduced average friction torque values. A tremendous enhancement in wear performance was recorded with a-C:H-coated parts and the coating was able to withstand the test conditions with little or no delamination.


Author(s):  
Ms. Sonam Gupta ◽  
Ms. Sera Fernandes ◽  
Ms. Hajra Gupta ◽  
Dr. Sejal Rathod

Motor or engine oil is a lubricant for engines containing majorly of base oils; these base oils include petrol-based hydrocarbons. Petroleum hydrocarbon contamination is one of the major environmental problems resulting from its large scale uses in transportation, industrial and other sectors. Accidental release and workshop seepage of petroleum products are the key concern of the environment. Fresh engine oil contains polycyclic aromatic hydrocarbons (PAHs). Used engine oil also leads to further generation of PAHs. As an attempt to clean up such hydrocarbons, bioremediation or biodegradation methods are adapted. Bioremediation is a cost effective and eco-friendly treatment for oil contaminated materials by the use of micro-organisms. The present study is an attempt to isolate and find out hydrocarbon degrading fungi from oil and petroleum contaminated regions. Biodegradation potential of soil mycobiota isolated from automobile mechanic workshop in Virar on engine oil was investigated using standard methods. The most capable oil degrading fungi was identified morphologically by wet mount technique as Fusarium sp. The biodegradation of hydrocarbons and oil was determined by using 2,6 Dichlorophenol-indophenol (DCPIP) assay and gravimetric analysis. The quantitative estimation of engine oil degradation showed rate of degradation as 87% and 89%. This study confirms that isolated Fusarium sp. has the potential exploited in the bio-treatment and removal of hydrocarbons from the polluted soil. Results were recorded in the form of biodegradation percentage of hydrocarbon. The present study and their results can give unique future prospects in the field of bioremediation and biodegradation of petroleum contaminated soil.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012031
Author(s):  
S M Anisuzzaman ◽  
M H Jumaidi ◽  
N N M Nasir

Abstract Used lubricating oil (ULO) is considered hazardous as it is able to cause pollution and affect the environment. The presence of degraded additives, contaminants, and by-products of degradation render ULO more toxic and harmful to health and environment than virgin base oils. Recovery of ULO generally comprises cleaning, drying, and adsorption in order to eliminate water, sludge, and impurities. As the ULO is one of the hazardous wastes generated in various industries, such as industrial and automotive, it should not be used or disposed of in ways that are harmful for the environment. Recovery of ULO carries out many advantages which includes lower environmental impact, higher energy saving and lower risks. The main objective of this paper was to thoroughly review various recovery process principles and treatment methods for ULO. Importance of ULO recycling and various techniques along with their limitations were also discussed. The significance of this study lies in reviewing the roles of adsorbent and adsorption reclamation processes of ULO and few promising adsorbents were earmarked for further study.


2021 ◽  
Author(s):  
Stefan Ptak

Crude oil is and will continue to be in the near future the basic natural economic resource in the world. The use of products derived from crude oil is the driving force of the economy in every country. Many products, semi-finished products, and raw materials are obtained from the processing of crude oil and used in many industries, including the petrochemical industry. Petroleum plasticisers play an important role in this area of the country’s economy as a softening additive in the vulcanisation of rubbers, especially synthetic styrene-butadiene rubber (SBR), and as a component of rubber compounds in their production and vulcanisation. The development of petroleum plasticisers for the rubber industry is determined by many documents and laws, as well as a number of requirements resulting from the nature of the production and operating conditions of rubber products. In particular, they must: • have the chemical composition required for a given combination and have appropriate physicochemical properties, • exhibit compatibility with the selected rubber, • demonstrate low volatility during the processes of rubber production, rubber compound production, and vulcanisation, and • not show any toxic effects. Petroleum plasticisers used in rubber compositions (SBR) are also called filler oils, which consist of hydrocarbon particles containing from 25 to 35 carbon atoms and are divided into aromatic, naphthenic, and paraffinic types depending on the proportion of carbons in the structures the aromatic, naphthenic and paraffin. An important role in the experimental research of this dissertation is played by highly aromatic plasticisers, a by-product of refining solvents of vacuum distillates from crude oil in the production of base oils, which have gained a lot of significance in the production of car tyres. DAE highly aromatic plasticisers have the highest content of aromatic hydrocarbons and the associated high content of polycyclic aromatic compounds and benzo[a]pyrene. The European Union’s introduction of EU Directive 76/769/EEC and Regulation 1907/2006 was aimed at reducing the content of polycyclic aromatic hydrocarbons (PAH) in tyres, which led to the oil industry’s production of petroleum plastics with low PAH content using various production processes to meet the needs of the global tyre industry. After DAE plasticisers were banned due to their mutagenic and carcinogenic activity, the global plasticisers market in 2010 created the REACH system in the European Union. Caused the adoption by the European Parliament and the Council on December 18, 2006, Regulation No. 1907/2006 in on registration, evaluation, authorization and related restrictions on chemicals, introducing provision 27 to Directive 76/769/EEC of the amendment to prohibit the use of highly aromatic extracts exceeding the limit for polycyclic aromatic hydrocarbon content. The experimental part contains the results of research on the development and industrial-scale implementation of TDAE plasticiser production technology that meets the requirements for carcinogenicity and mutagenicity. An important stage of experimental research is the technological industrial trials concerning the TDAE plasticiser tests carried out on the Furfurol installation in the production plant of ORLEN OIL Sp. z.o.o. in Płock, Poland. The main justification of the purpose and theses of the work are the investigations of selective solvent refining of heavy extracts in terms of the production of TDAE aromatic plasticisers meeting the requirements of EU Regulation 1907/2006. As a result of the work, it is possible to introduce into the production cycle, in addition to the base oils, a TDAE plasticiser with the trade name Elasticol, on the oil block of PKN ORLEN S.A. Another important element of the experimental research is the use of a solvent dewaxing process to obtain various TDAE plasticisers. The process of solvent dewaxing with various solvents allowed for the development of production technology of a modified TDAE plasticiser that meets the quality requirements of EU Regulation 1907/2006 with the potential for improving its low-temperature properties. In addition, the author has registered this technology in the Patent Office under the common title, Manufacture of a modified TDAE plasticiser intended for the production of caoutchouc and rubber, especially car tyres. Due to the broad knowledge of the interdisciplinary, extensive scope of the work, its conclusions were grouped into general, detailed, methodological, and perspective.


2021 ◽  
Vol 68 (3-4) ◽  
Author(s):  
Kathrin Alt ◽  
Alexander Hüttinger ◽  
Markus Wöppermann ◽  
Jörg Hermes ◽  
Jürgen Braun ◽  
...  

Gear oils on the basis of Group I base oils are the most widely used lubricant in industrial drive systems. With dynamic friction torque tests, the influence of Group I base oils from different regions/refineries on elastomer compatibility of radial shaft seals is investigated by dynamic friction torque tests. The results show a significant influence of base oil on the development of frictional torque in the sealing gap and the elastomer compatibility.


Sign in / Sign up

Export Citation Format

Share Document