scholarly journals Hormones Performs a Crucial Role in the Regulation of Cotton Fiber Synthesis

2021 ◽  
Vol 2 (4) ◽  
pp. 9-25
Author(s):  
Muhammad Nouman Khalid ◽  

Cotton is the world's most important source of renewable fiber, and it is largely utilized in the textile industry to make clothes. In contrast to the ovule epidermis, cotton fibers are single cells that have differentiated from it, making them an attractive model system for the study of polyploidization, production of cell wall and elongation of cell. Plant hormones, that are present in very small low quantities in the plant, play essential roles in a variety of developmental processes, and new research has found that hormones play a critical role in controlling cotton fiber formation, as well as other developmental processes. For example, it has been demonstrated that the exogenous administration of hormones can stimulate the start and development of fiber cells. However, there is currently a lack of a thorough knowledge of phytohormones that regulate the formation of fiber. This paper focuses on latest developments in the understanding of the roles of different phytohormones involved in fiber development, including brassinosteroid, gibberellin, cytokinin, auxin, ethylene and abscisic acid. This paper reviews the discovery of genes associated in hormone biosynthesis and signaling pathways, as well as the methods by which these phytohormones control the commencement and elongation of fiber cells in cotton. All of the hormones involved in fiber formation are beneficial; however, cytokinin and abscisic acid are detrimental. Auxin, gibberellin, brassinosteroid, ethylene, jasmonate, and strigolactones are among the hormones involved in fiber development. A complete analysis of the function of phytohormones in cotton fiber development is our goal.

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1235
Author(s):  
Dongjie Yang ◽  
Yuanyuan Liu ◽  
Hailiang Cheng ◽  
Qiaolian Wang ◽  
Limin Lv ◽  
...  

WRKY transcription factors had multiple functions in plant secondary metabolism, leaf senescence, fruit ripening, adaptation to biotic and abiotic stress, and plant growth and development. However, knowledge of the group III WRKY subfamily in fiber development in upland cotton (Gossypium hirsutum L.) is largely absent. Previous studies have shown that there were 21 putative group III WRKY members in G. hirsutum L. These putative amino acid sequences from the III WRKY group were phylogenetically clustered into three clades. Multiple alignment, conservative motif analysis, and gene structure analysis showed that the members clustered together in the phylogenetic tree had similar motifs and gene structures. Expression pattern analysis revealed that variation in the expression levels of these genes in different tissues and fiber development stages. To better understand the functions of putative group III WRKY genes in G. hirsutum L., we selected the cotton fiber initiation-related gene GhWRKY53 for cloning and functional identification. The subcellular localization experiment of GhWRKY53 in Nicotiana tabacum leaves showed that it was located in the nucleus. The heterologous expression of GhWRKY53 in Arabidopsis thaliana could significantly increase the density of trichomes. Twelve proteins that interacted with GhWRKY53 were screened from the cotton fiber cDNA library by yeast two-hybrid experiment. This study findings lay a foundation for further research on the role of the GhWRKY53 during cotton fiber development and provide a new insight for further studying putative group III WRKY genes in G. hirsutum L. Our research results also provide vital information for the genetic mechanism of high-quality cotton fiber formation and essential genetic resources for cotton fiber quality improvement.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Nan Wu ◽  
Jun Yang ◽  
Guoning Wang ◽  
Huifeng Ke ◽  
Yan Zhang ◽  
...  

Abstract Background The fiber yield and quality of cotton are greatly and periodically affected by water deficit. However, the molecular mechanism of the water deficit response in cotton fiber cells has not been fully elucidated. Results In this study, water deficit caused a significant reduction in fiber length, strength, and elongation rate but a dramatic increase in micronaire value. To explore genome-wide transcriptional changes, fibers from cotton plants subjected to water deficit (WD) and normal irrigation (NI) during fiber development were analyzed by transcriptome sequencing. Analysis showed that 3427 mRNAs and 1021 long noncoding RNAs (lncRNAs) from fibers were differentially expressed between WD and NI plants. The maximum number of differentially expressed genes (DEGs) and lncRNAs (DERs) was identified in fibers at the secondary cell wall biosynthesis stage, suggesting that this is a critical period in response to water deficit. Twelve genes in cotton fiber were differentially and persistently expressed at ≥ five time points, suggesting that these genes are involved in both fiber development and the water-deficit response and could potentially be used in breeding to improve cotton resistance to drought stress. A total of 540 DEGs were predicted to be potentially regulated by DERs by analysis of coexpression and genomic colocation, accounting for approximately 15.76% of all DEGs. Four DERs, potentially acting as target mimics for microRNAs (miRNAs), indirectly regulated their corresponding DEGs in response to water deficit. Conclusions This work provides a comprehensive transcriptome analysis of fiber cells and a set of protein-coding genes and lncRNAs implicated in the cotton response to water deficit, significantly affecting fiber quality during the fiber development stage.


2021 ◽  
Vol 8 (2) ◽  
pp. 1-8
Author(s):  
Chanel Angelique Fortier ◽  
Christopher Delhom ◽  
Michael K. Dowd

This work reports on two debated points related to the metal content of cotton fiber and its influence on processing. The first issue is if the metal levels of raw fibers are naturally deposited during fiber development or if the levels are influenced by weathering and harvesting conditions present after boll opening. This was tested by harvesting bolls just as they were opening and after the opened bolls were allowed to field age. The second issue relates to the importance of metal levels on fiber dyeability. Results indicate that the metal levels of newly-opened cotton were not appreciably different from those of aged cotton bolls and that the fiber metal levels after scouring and bleaching had little correlation with dye uptake. Additionally, some metal levels exceeded those previously reported and the environment appeared to have a stronger influence on fiber Ca and Mg levels than did cultivar differences.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1620
Author(s):  
Murali Krishna Koramutla ◽  
Manisha Negi ◽  
Belay T. Ayele

Plant growth and development and interactions with the environment are regulated by phytohormones and other signaling molecules. During their evolution, plants have developed strategies for efficient signal perception and for the activation of signal transduction cascades to maintain proper growth and development, in particular under adverse environmental conditions. Abscisic acid (ABA) is one of the phytohormones known to regulate plant developmental events and tolerance to environmental stresses. The role of ABA is mediated by both its accumulated level, which is regulated by its biosynthesis and catabolism, and signaling, all of which are influenced by complex regulatory mechanisms. Under stress conditions, plants employ enzymatic and non-enzymatic antioxidant strategies to scavenge excess reactive oxygen species (ROS) and mitigate the negative effects of oxidative stress. Glutathione (GSH) is one of the main antioxidant molecules playing a critical role in plant survival under stress conditions through the detoxification of excess ROS, maintaining cellular redox homeostasis and regulating protein functions. GSH has recently emerged as an important signaling molecule regulating ABA signal transduction and associated developmental events, and response to stressors. This review highlights the current knowledge on the interplay between ABA and GSH in regulating seed dormancy, germination, stomatal closure and tolerance to drought.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangliu Yin ◽  
Youling Zeng ◽  
Jieyun Ji ◽  
Pengju Wang ◽  
Yufang Zhang ◽  
...  

The APETALA2 (AP2) and ethylene-responsive element-binding factor (ERF) gene family is one of the largest plant-specific transcription factor gene families, which plays a critical role in plant development and evolution, as well as response to various stresses. The TARGET OF EAT3 (TOE3) gene is derived from Halostachys caspica and belongs to the AP2 subfamily with two AP2 DNA-binding domains. Currently, AP2 family mainly plays crucial roles in plant growth and evolution, yet there are few reports about the role of AP2 in abiotic stress tolerance. Here, we report HcTOE3, a new cold-regulated transcription factor gene, which has an important contribution to freezing tolerance. The main results showed that the expression of HcTOE3 in the H. caspica assimilating branches was strongly induced by different abiotic stresses, including high salinity, drought, and extreme temperature (heat, chilling, and freezing), as well as abscisic acid and methyl viologen treatments. Overexpressing HcTOE3 gene (OE) induced transgenic Arabidopsis plant tolerance to freezing stress. Under freezing treatment, the OE lines showed lower content of malondialdehyde and electrolyte leakage and less accumulation of reactive oxygen species compared with the wild type. However, the survival rates, antioxidant enzyme activities, and contents of osmotic adjustment substance proline were enhanced in transgenic plants. Additionally, the OE lines increased freezing tolerance by up-regulating the transcription level of cold responsive genes (CBF1, CBF2, COR15, COR47, KIN1, and RD29A) and abscisic acid signal transduction pathway genes (ABI1, ABI2, ABI5, and RAB18). Our results suggested that HcTOE3 positively regulated freezing stress and has a great potential as a candidate gene to improve plant freezing tolerance.


2019 ◽  
Vol 20 (6) ◽  
pp. 1395 ◽  
Author(s):  
Hamna Shazadee ◽  
Nadeem Khan ◽  
Jingjing Wang ◽  
Chencan Wang ◽  
Jianguo Zeng ◽  
...  

The protein phosphatase (PP2C) gene family, known to participate in cellular processes, is one of the momentous and conserved plant-specific gene families that regulate signal transduction in eukaryotic organisms. Recently, PP2Cs were identified in Arabidopsis and various other crop species, but analysis of PP2C in cotton is yet to be reported. In the current research, we found 87 (Gossypium arboreum), 147 (Gossypium barbadense), 181 (Gossypium hirsutum), and 99 (Gossypium raimondii) PP2C-encoding genes in total from the cotton genome. Herein, we provide a comprehensive analysis of the PP2C gene family in cotton, such as gene structure organization, gene duplications, expression profiling, chromosomal mapping, protein motif organization, and phylogenetic relationships of each species. Phylogenetic analysis further categorized PP2C genes into 12 subgroups based on conserved domain composition analysis. Moreover, we observed a strong signature of purifying selection among duplicated pairs (i.e., segmental and dispersed) of Gossypium hirsutum. We also observed the tissue-specific response of GhPP2C genes in organ and fiber development by comparing the RNA-sequence (RNA-seq) data reported on different organs. The qRT-PCR validation of 30 GhPP2C genes suggested their critical role in cotton by exposure to heat, cold, drought, and salt stress treatments. Hence, our findings provide an overview of the PP2C gene family in cotton based on various bioinformatic tools that demonstrated their critical role in organ and fiber development, and abiotic stress tolerance, thereby contributing to the genetic improvement of cotton for the resistant cultivar.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 128 ◽  
Author(s):  
Haron Salih ◽  
Shoupu He ◽  
Hongge Li ◽  
Zhen Peng ◽  
Xiongming Du

The ethylene-insensitive3-like/ethylene-insensitive3 (EIL/EIN3) protein family can serve as a crucial factor for plant growth and development under diverse environmental conditions. EIL/EIN3 protein is a form of a localized nuclear protein with DNA-binding activity that potentially contributes to the intricate network of primary and secondary metabolic pathways of plants. In light of recent research advances, next-generation sequencing (NGS) and novel bioinformatics tools have provided significant breakthroughs in the study of the EIL/EIN3 protein family in cotton. In turn, this paved the way to identifying and characterizing the EIL/EIN3 protein family. Hence, the high-throughput, rapid, and cost-effective meta sequence analyses have led to a remarkable understanding of protein families in addition to the discovery of novel genes, enzymes, metabolites, and other biomolecules of the higher plants. Therefore, this work highlights the recent advance in the genomic-sequencing analysis of higher plants, which has provided a plethora of function profiles of the EIL/EIN3 protein family. The regulatory role and crosstalk of different metabolic pathways, which are apparently affected by these transcription factor proteins in one way or another, are also discussed. The ethylene hormone plays an important role in the regulation of reactive oxygen species in plants under various environmental stress circumstances. EIL/EIN3 proteins are the key ethylene-signaling regulators and play important roles in promoting cotton fiber developmental stages. However, the function of EIL/EIN3 during initiation and early elongation stages of cotton fiber development has not yet been fully understood. The results provided valuable information on cotton EIL/EIN3 proteins, as well as a new vision into the evolutionary relationships of this gene family in cotton species.


Sign in / Sign up

Export Citation Format

Share Document