scholarly journals Gene Action Studies for Yield and its Related Traits by using Generation Mean Analysis in Mungbean [Vigna radiata (L.) Wilczek]

Author(s):  
Biswajit Lenka ◽  
Bhabendra Baisakh ◽  
Manasi Dash ◽  
Devraj Lenka ◽  
Swapan Kumar Tripathy

Background: Mungbean is one of the most important legume crop with high nutritional value and is consumed in various forms in different parts of India. In order to meet its growing demand, there is a need to increase the yield through adoption of breeding approaches like heterosis breeding and breeding for high yielding varieties. This demands a critical study of the gene action involved in regulation of yield and yield attributing traits which can be achieved through generation mean analysis. Methods: In the present study, generation mean analysis was undertaken using five parameter model to estimate the nature and magnitude of gene action of yield and its component traits in six crosses of greengram. Result: Magnitude of dominance gene effect was reported to be higher than additive gene effect in most of the crosses. Either one or both the interaction components were found significant for all the traits besides number of branches per plant and hundred seed weight. It was evident from the study that the yield components could be improved by exploiting both additive and non-additive gene effects. The transgressive segregants thus produced will prompt the development of desirable high yielding genotypes.

Author(s):  
R. Narasimhulu ◽  
N. V. Naidu ◽  
K.H. P. Reddy

Six basic generations viz., P1, P2, F1, F2, B1 and B2 of five selected crosses viz., LGG-460 × WGG-37, TM-96-2 × WGG-37, TM-96-2 × PM-112, MGG-295 × PM-110 and MGG-351 × PM-115 were studied to assess the nature and mode of gene action for yield and its component traits through generation mean analysis. In general, magnitude of dominance effects (h) has greater value than additive effects (d) for majority of the traits in all the crosses. All the traits are under the influence of duplicate epistasis besides additive type of gene effects for which bi-parental mating or inter-se mating may be adopted followed by pedigree method of selection to modify the genetic architecture of greengram for attaining higher yields with desirable properties.


2021 ◽  
Vol 3 (2) ◽  
pp. 72-85
Author(s):  
A. Isong ◽  
A. Balu ◽  
A. Ahmed ◽  
J. O. Mbe ◽  
I. G. Mohammed ◽  
...  

The mode of gene action for the expression of quantitative traits is decided by the predominance of variances due to additive, dominance and epistasis gene effects. In this experiment, involving four F1 crosses (TCH1716 x TCB37, TCH1705-101 x TCB209, KC2 x TCB26 and TSH0250 x DB3) of upland cotton, inheritance of major yield components by Generation Mean Analysis was investigated. The investigation revealed that both additive and dominance gene effects were involved in the expression of most of the yield contributing traits. One or more types of epistatic interaction effects were prevalent for all the characters and thus played a major role in the control of the characters. The inheritance of the traits was found to be complex in lieu of the low heritability estimates and genetic advance over mean. For seed cotton yield per plant, the dominance x dominance interaction effect was positively significant for all the crosses, the additive x dominance effect was positively significant only in cross 1 and the dominance main effect showed negative significant in all crosses. The dominance (h) and dominance x dominance (l) effects were of opposite signs in all the crosses indicating the presence of duplicate epistasis in all the crosses. To harness additive gene effects for improvement of some of the traits, breeding methods with postponement of selection to later generation should be adopted.


Author(s):  
Tuntun Naing ◽  
S.K. Verma ◽  
R.K. Panwar ◽  
A.K. Gaur ◽  
Charupriya Chauhan ◽  
...  

Background: For improvement of quantitative traits the information on nature of gene action is an important asset for plant breeders. However, the information on gene action for yield and its attributes is scanty in pigeonpea crop. Methods: The present experiment was carried out during kharif 2018-2020 at GBPUAT, Pantnagar, Uttarakhand. The experimental material consisted of six generations of three crosses viz., PADT-16 × PUSA 992, PADT-16 × UPAS 120 and PADT-16 × PAU 881. The observations were recorded on nine morphological characters. The gene action was estimated by three parameters model of Jinks and Jones if scaling tests were non significant and six parameters model of Hayman if scaling tests were significant. Result: For majority of traits in all three crosses, epistatic gene action was present as scaling tests were found to be significant. However, for traits number of primary branches, number of secondary branches and number of seeds per pod in cross PADT-16 × UPAS 120 a simple additive/dominance model was found to be adequate. In general, magnitude of dominance was found to be higher as compared to corresponding additive gene action. The high magnitude of dominance indicated that heterosis breeding is rewarding in these characters.


2017 ◽  
Vol 51 (06) ◽  
Author(s):  
P. S. Ramani ◽  
M. A. Vaddoria ◽  
D. R. Mehta ◽  
J. D. Ukani

Gentic studies for fruit yield per plant and its attributing traits in brinjal was conducted by following line x tester mating design comprising of seven lines and four testers at Instructional Farm, Junagadh Agricultural University, Junagadh, Gujarat. The analysis of combining ability revealed the predominant role of both additive and non-additive gene effects in the inheritance of fruit yield and its component traits. The genotypes NSR-1, JBG-10-208 and Pant Rituraj displayed high gca effect for fruit yield per plant and some desirable traits like days to 50 % flowering, days to first picking, fruit girth, fruit weight, numbers of primary branches per plant, plant spread and total soluble solids. The estimates of sca effect of the crosses indicated that five hybrids manifested significant and positive sca effect for fruit yield per plant. The crosses JBG-10-208 x GJB-2, ABR-2-23 x GBL-1 and AB-09-1 x GOB-1 were emerged as best specific combinations. The cross JBG-10-208 x GJB-2 was also found good specific combiner for plant height, fruit weight, fruit girth and number of primary branches per plant and also showed maximum per se performance. These hybrids may be exploited for obtaining transgressive segregants toward developing hybrid varieties in brinjal.


2019 ◽  
Vol 38 (4) ◽  
Author(s):  
Mamta Gautam ◽  
K.K. Gautam ◽  
R.K. Panwar ◽  
S.K. Verma

Diallel analysis was used to understand the nature of gene effects to determine the nature, magnitude and direction of heterosis and to identify promising single cross based on mean performance, heterosis, GCA and SCA effect and to dissect the kind of gene action governing the economic traits in lentil. Eight lentil parents and their 28 F1S (excluding reciprocals) along with 2 checks were evaluated. Among parents, investigation of highest gca effects illustrated that PL 406 and L 4188 were good general combiners for most of yield. Cross PL 7 x PL 406 showed better parent as well as standard heterosis over check for maximum number of traits viz., harvest index, pods per cluster, seeds per pod and secondary branches per plant and yield. Both additive and non-additive gene actions were involved in governing the inheritance of traits. This study suggests, even parents with poor GCA possess the potential to produce heterotic crosses. The manifestation of high amount of heterosis for seed yield and component traits by a large number of crosses suggest for the need to maintain heterozygosity in the population for maximum expression of the traits in desired direction.


Author(s):  
Alireza Haghighi Hasanalideh ◽  
Mehrzad Allahgholipour ◽  
Ezatollah Farshadfar

This study was undertaken to assess the combining ability of 6 rice varieties, for viscosity parameters and determining gene action controlling Rapid Visco Analyser (RVA) characters. F2 progenies derived from a 6×6 half diallel mating design with their parents were grown in a randomized complete block design with three replications at the research farm of Rice Research Institute of Iran (RRII) in 2015. The diallel analysis by Griffing`s method indicated the involvement of additive and non-additive gene actions controlling RVA traits. For traits PV and FV RI18447-2 and IR50 were the best combiners for increasing and decreasing, respectively. Deylamani and IR50 were the best combiners for increasing and decreasing BV, respectively. Beside, due to more portion of non-additive gene action in controlling trait SV, The Gilaneh × RI18430-46, and Deylamani × RI18430-46 crosses were the best for increasing and decreasing SV, respectively. The high estimates of broad sense heritability and narrow sense heritability for BV and FV, indicated the importance of additive effects in expression of these traits. Therefore, selection base breeding methods will be useful to improve these traits and selection in the early generations could be done to fix the favourable genes. Low estimate of narrow sense heritability for SV revealed that non-additive gene effects play important role in controlling setback viscosity. So, hybrid base breeding methods will be useful to improve this trait.


2010 ◽  
pp. 113-120
Author(s):  
S Ahmad ◽  
AKM Quamruzzaman ◽  
M Nazim Uddin

The experiment was conducted at the experimental farm of Olericulture Division, Horticulture Research Centre, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur from May to August 2003. Combining ability effects were estimated for yield and component traits in a 8 x 8 diallel design excluding reciprocals in tomato. The variances for general combining ability (GCA) and specific combining ability (SCA) were highly significant indicating the presence of additive as well as non-additive gene effects in the traits studied. The relative magnitude of these variances indicated that additive gene effects were more prominent for all the characters under study. The tomato genotype P1 (TM051) proved to be the best general combiner for yield followed by P2 (TM053) and the combinations P1xP3, P1xP5 and P5xP7 were identified as the best specific combiner for earliness, yield per plant, number of fruits per plant and individual fruit weight.


2007 ◽  
Vol 20 (2) ◽  
pp. 23-30 ◽  
Author(s):  
Z. I. Sarker ◽  
A. K. M. Shamsuddin ◽  
R. Ara

Estimates of gene action for lodging related traits at Wheat Research Center during 1999-2002 in three crosses of wheat showed different genetic control of the traits among the crosses. For almost all traits, additive or dominance effects or both components were significant in either three- or six-parameter model, indicating that both additive and dominance gene effects were operative for different traits contributing to lodging resistance. Although duplicate type of epistasis was also observed for second internode breaking strength, plant height and spikes per plant and grain yield per plant once in different crosses, additive x additive epistasis along with additive gene action for the aforesaid traits would improve selection of the same in the segregating populations. The additive x dominance gene interaction for second internode length, diameter and wall thickness would be useful too for improvement of second internode breaking strength and consequently lodging resistance, as their inheritance and selection in segregating populations would be relatively easier than the traits controlled by completely non-additive genes. For duplicate type of epistasis biparental mating or recurrent selection followed by conventional selection is suggested.DOI: http://dx.doi.org/10.3329/bjpbg.v20i2.17031


2016 ◽  
Vol 8 (11) ◽  
pp. 138 ◽  
Author(s):  
Lawrence Owere ◽  
Pangirayi Tongoona ◽  
John Derera ◽  
Nelson Wanyera

<p>Blast disease is the most important biotic constraint to finger millet production. Therefore disease resistant varieties are required. However, there is limited information on combining ability for resistance and indeed other agronomic traits of the germplasm in Uganda. This study was carried out to estimate the combining ability and gene effects controlling blast disease resistance and selected agronomic traits in finger millet. Thirty six crosses were generated from a 9 × 9 half diallel mating design. The seed from the 36 F<sub>1</sub> crosses were advanced by selfing and the F<sub>2</sub> families and their parents were evaluated in three replications. General combining ability (GCA) for head blast resistance and the other agronomic traits were all highly significant (p ≤ 0.01), whereas specific combining ability (SCA) was highly significant for all traits except grain yield and grain mass head<sup>-1</sup>. On partitioning the mean sum of squares, the GCA values ranged from 31.65% to 53.05% for head blast incidence and severity respectively, and 36.18% to 77.22% for the other agronomic traits measured. Additive gene effects were found to be predominant for head blast severity, days to 50% flowering, grain yield, number of productive tillers plant<sup>-1</sup>, grain mass head<sup>-1</sup>, plant height and panicle length. Non-additive gene action was predominant for number of fingers head<sup>-1</sup>, finger width and panicle width. The parents which contributed towards high yield were <em>Seremi 2</em>, <em>Achaki</em>, <em>Otunduru</em>, <em>Bulo</em> and <em>Amumwari</em>. Generally, highly significant additive gene action implied that progress would be made through selection whereas non-additive gene action could slow selection progress and indicated selection in the later generations.</p>


2018 ◽  
Vol 43 (4) ◽  
pp. 599-609
Author(s):  
ANMS Karim ◽  
S Ahmed ◽  
AH Akhi ◽  
MZA Talukder ◽  
A Karim

Combining ability effects were estimated for grain yield and some other important agronomic traits of maize in a 7×7 diallel analysis excluding reciprocals. The variances for general combining ability (GCA) were found significant for yield, days to pollen shedding, days to silking and ear height while it was found non-significant for plant height and number of kernels/ear. Non-significant general combining ability (GCA) variance for plant height and number of kernels/ear indicates that these two traits were predominantly controlled by non- additive type of gene action. Specific combining ability (SCA) was significant for all the characters except yield and days to silking. Non-significant specific combining ability (SCA) variance for yield and days to silking suggests that these two traits were predominantly controlled by additive type of gene action. Both GCA and SCA variances were found significant only in days to pollen shedding and ear height indicated the presence of additive as well as non additive gene effects for controlling the traits. However, relative magnitude of these variances indicated that additive gene effects were more prominent for all the characters studied except days to silking. Parent BIL95 was the best general combiner for both high yield and number of kernels/ear and parent BML4 for dwarf plant type. Two crosses (BML4× BML36 and BIL114× BIL31) exhibited significant and positive SCA effects for grain yield involved low × average and average × average general combining parents. The range of heterosis expressed by different crosses for grain yield and days to silking was from -65.83 to 21.26 percent and -17.85 to 8.22 percent, respectively.. The better performing three crosses (BIL114×BIL31, BIL138×BIL95 and BIL31×BIL95) can be utilized for developing high yielding hybrid varieties as well as for exploiting hybrid vigour.Bangladesh J. Agril. Res. 43(4): 599-609, December 2018


Sign in / Sign up

Export Citation Format

Share Document