scholarly journals HARDWARE AND SOFTWARE OF AUTOMATIC CONTROL SYSTEM OF FUEL COMBUSTION PROCESS IN LOW AND MEDIUM POWER BOILERS. PART 2. ALGORITHMIC SOFTWARE

Author(s):  
Arthur Zaporozhets ◽  
Yurii Kuts

The efficiency of the functioning of boiler units depends on the availability of reliable information on the progress of technological processes. The lack of control and measuring systems for the composition of the exhaust gases leads to low efficiency of the boiler unit, in particular, due to poor-quality fuel combustion. Therefore, in modern operating conditions of boiler units, it is relevant to develop technological solutions focused on finding and minimizing the causes and mechanisms of the formation of harmful substances in exhaust gases. Due to the fact that replacement of outdated boiler units with new ones requires significant capital investments, a promising direction is the modernization of existing boiler units. It is a low-cost and efficient way of rational use of fuel while simultaneously reducing the level of harmful substances in exhaust gases. It remains relevant to ensure the functioning of the control systems for the composition of the air-fuel mixture (AFM) with a given speed and high reliability of maintaining the excess air ratio (EAR) at the stoichiometric level. In the article the high-quality algorithm is proposed for the operation of an automatic control system for the combustion of fuel in boilers of medium and low power by regulating the ratio of the components of the AFM for the burner with feedback according to the signals of the oxygen sensor. The algorithms for the operation of the frequency regulator of the ratio of the components of the AFM in various operating modes are considered. The developed algorithms allowed maintaining the stoichiometric air-fuel ratio in the boiler furnace, reducing the level of toxic emissions into the atmosphere and increasing the boiler efficiency by optimizing the fuel combustion process. The AFM ratio programmer is made in the LM Programmer technical programming environment and works with Windows operating systems (XP, Vista, 7, 8, 10) and oxygen sensors manufactured by Bosch. The visualization of the control process of the fuel combustion process is made in the technical programming environment LogWorks 3 and operates in the environment of Windows operating systems.

2016 ◽  
Vol 823 ◽  
pp. 291-296 ◽  
Author(s):  
Ion Lespezeanu ◽  
Florin Marius Militaru ◽  
Octavian Alexa ◽  
Constantin Ovidiu Ilie ◽  
Marin Marinescu

Flow corrections established based on Lambda control system of spark ignition engines, determines in a decisively way the quality of air-fuel mixture. Faults in the operation of the control system generates deviations of the mixture composition from stoichiometric report, in this way affecting the entire combustion process in engine cylinders. This phenomenon leads, among others, to changes regarding the density of pollutant emissions from exhaust gases. In this context, this paper presents experimental researches made using the simulation of faults that may occur in the control system to highlight their influence on the concentration of engine emissions.


Author(s):  
Arthur Zaporozhets ◽  
Yurii Kuts

In Ukraine today there are more than 6000 boiler plants with a heating capacity of up to 1 Gcal/h with an efficiency of about 70 %, requiring replacement or modernization, 40 % of boilers are operated with an efficiency of less than 82 %, about 11000 boilers with a capacity of 100 kW to 1 MW have been in operation for over 20 years. Although the part of these boilers in the municipal heat power system of Ukraine does not exceed 14 %, the projected savings in natural fuel in these boilers is more than 130 million cubic meters per year. Thus, increasing the efficiency of the fuel combustion process in small and medium power boilers is an urgent task at the present time. The article presents the results of creating a method and hardware that implements it, to increase the speed and reliability of monitoring the process of fuel combustion in boiler units based on measuring the concentration of residual oxygen in exhaust gases. The developed method is implemented by stepwise correction of the ratio of the air-fuel mixture entering to the furnace of the boiler for combustion, according to feedback signals from a broadband oxygen sensor manufactured by Bosch, located in the outgoing channel. The air-fuel ratio control with automatic adjustment of the blower fan speed depending on the amount of fossil fuel supplied for combustion ensures low-toxic combustion of fuel with low emissions of nitrogen oxides and carbon monoxide, and high efficiency. Additional use of a variable frequency drive in the combustion control system allows to reduce energy consumption by 30-40 %, eliminate starting currents and motor overloads, reduce mechanical wear of equipment, increase the service life of contact switching equipment. In general, the developed fuel combustion control system allows to optimize the fuel combustion mode, taking into account the actual conditions, operating modes of the boiler unit and fuel characteristics; to reduce specific fuel consumption by at least 10%; to reduce the level of emissions of nitrogen oxides up to 40 % and carbon monoxide up to 50 %; to increase the efficiency by at least 5 %; qualitatively to simplify the work of the boiler maintenance personnel.


Author(s):  
A.O. Zaporozhets ◽  
◽  
V.P. Babak

The monograph deals with the problems of increasing the effi ciency of fuel combustion and reducing emissions of harmful substances in boilers with a capacity of up to 3.5 MW. Approaches for the formation of stoichiometric air-fuel mixtures in boilers are developed. Th e method for indirect determination of the concentration of air components was developed, which allows to increase the metrological characteristics of gas-analyzing devices. Methods, algorithms and programs to automate the combustion control process, while ensuring the reliability of the data, are created. A system for monitoring the fuel combustion process was developed, and it was implemented on the basis of the NIISTU-5 boiler unit. For researchers, engineers, as well as lecturers and postgraduates of higher educational institutions and scientifi c institutions, working in the fi eld of engineering and optimization in the energy.


Author(s):  
A. V. Soudarev ◽  
Yu. I. Zakharov ◽  
E. D. Vinogradov ◽  
M. N. Gutnik

The results of research into development of engineering approaches to environmental update of the GTN-16 16 MW gas-pumping unit combustor are presented. The built-in “disc” combustor of the GTN-16 is noted for having a small length and very low hydraulic resistances. The multi-burner low-NOx combustor design was developed in a test rig. The “lean” fuel/air premix combustion was adopted as the basis for the design. The proposed environmental update of the GTN-16 combustor does not bring about any changes in the most costly material-intensive and labour-consuming components of the combustor, viz. casing, frame, liners. No changes were also made in the automatic control system. It is noteworthy that a similar approach is appropriate for the “Turbomotorny Zavod” (Ekaterinburg, Russia) GTN-25 type 25 MW unit.


Author(s):  
А. Yu. Izmaylov ◽  
Ya. P. Lobachevskiy ◽  
V. К. Khoroshenkov ◽  
N. Т. Goncharov ◽  
S. E. Lonin ◽  
...  

The introduction of information and digital technologies that support and support all technological processes in the field is an urgent need for the development and implementation of such technology. An organisationally complex and financially intensive project is necessary because of the wide variety of economic entities that differ in the size of production, forms of ownership and socio-economic conditions of production. Automated information control system for mobile units agricultural enterprise provides those-Niko-economic performance, optimum capacity utilization through the use of timely and reliable information on technology. Machine and tractor aggregates are appertained as control objects with variable structure, which is explained by possibility of the system formation from tractor or field machines mobile units with various purposes: tillable, cultivatable, sowing, harvesting and etc. This MTA feature was determined creation of digital control systems of two groups of automatic control and management of the basic energy and operational parameters: tractors, machines and vehicles as part of MTA. To the first group are appertained the automatic control system of tractor motor component loading, motion speed, frictional sliding. To the second group – automatic regulation system of operating depth, seed rate, treatment of liquid combined fertilizers and crop protection agents, filling and driving of various MTA. Novelty of researches consists in methodology of the organization of the centralized control and management of various technological processes at carrying out field works.


Sign in / Sign up

Export Citation Format

Share Document