scholarly journals Rhamnolipid Biosurfactant Production by Strain of Pseudomonas aeruginosa using Different Raw Materials

Author(s):  
S. N. Zodpe
2002 ◽  
Vol 18 (6) ◽  
pp. 1277-1281 ◽  
Author(s):  
K.S.M. Rahman ◽  
T.J. Rahman ◽  
S. McClean ◽  
R. Marchant ◽  
I.M. Banat

2021 ◽  
Vol 70 (1) ◽  
pp. 68-78
Author(s):  
KAIQIANG LIANG ◽  
RUIMIN GAO ◽  
CHENGJUN WANG ◽  
WEIBO WANG ◽  
WEI YAN

The chemotactic properties of an oil-degrading Pseudomonas aeruginosa strain 6-1B, isolated from Daqing Oilfield, China, have been investigated. The strain 6-1B could grow well in crude oil with a specific rhamnolipid biosurfactant production. Furthermore, it exhibits chemotaxis toward various substrates, including glycine, glycerol, glucose, and sucrose. Compared with another oil-degrading strain, T7-2, the strain 6-1B presented a better chemotactic response towards crude oil and its vital component, n-alkenes. Based on the observed distribution of the strain 6-1B cells around the oil droplet in the chemotactic assays, the potential chemotaxis process of bacteria toward crude oil could be summarized in the following steps: searching, moving and consuming.


2005 ◽  
Vol 21 (5) ◽  
pp. 1562-1566 ◽  
Author(s):  
M. Nitschke ◽  
S.G.V.A.O. Costa ◽  
R. Haddad ◽  
L.A.G. Goncalves ◽  
M.N. Eberlin ◽  
...  

2020 ◽  
Vol 16 (6) ◽  
pp. 928-933
Author(s):  
Jujjavarapu S. Eswari

Objective: Biosurfactants are the surface active agents which are used for the reduction of surface and interfacial tensions of liquids. Rhamnolipids are the surfactants produced by Pseudomonas aeruginosa. It requires minimum nutrition for its growth as it can also grow in distilled water. The rhamnolipids produced by Pseudomonas aeruginosa are extra-cellular glycolipids consisting of L-rhamnose and 3-hydroxyalkanoic acid. Methods: The fed-batch method for the rhamnolipid production is considered in this study to know the influence of the carbon, nitrogen, phosphorous substrates as growth-limiting nutrients. Pulse feeding is employed for limiting nutrient addition at particular time interval to obtain maximum rhamnolipid formation from Pseudomonas aeruginosa compared with the batch process. Results: Out of 3 fed batch strategies constant glucose fed batch strategy shows best and gave maximum rhamnolipid concentration of 0.134 g/l.


2018 ◽  
Vol 22 (2) ◽  
pp. 373-384 ◽  
Author(s):  
Kaustuvmani Patowary ◽  
Moonjit Das ◽  
Rupshikha Patowary ◽  
Mohan Chandra Kalita ◽  
Suresh Deka

2012 ◽  
Vol 77 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Milena Rikalovic ◽  
Gordana Gojgic-Cvijovic ◽  
Miroslav Vrvic ◽  
Ivanka Karadzic

Production and characterization of rhamnolipid biosurfactant obtained by strain Pseudomonas aeruginosa san ai was investigated. With regard to carbon and nitrogen source several media were tested to enhance production of rhamnolipids. Phosphate-limited proteose peptone-ammonium salt (PPAS) medium supplemented with sun flower oil as a source of carbon and mineral ammonium chloride and peptone as a nitrogen source greatly improved rhamnolipid production, from 0.15 on basic PPAS (C/N ratio 4.0), to 3 g L-1, on optimized PPAS medium (C/N ratio 7.7). Response surface methodology analysis was used for testing effect of three factors: temperature, concentration of carbon and nitrogen source (w/w), in optimized PPAS medium on rhamnolipid production. Isolated rhamnolipids were characterized by IR and ESI-MS. IR spectra confirmed that isolated compound corresponds to rhamnolipid structure, whereas MS indicated that isolated preparation is a mixture of mono-rhamno-mono-lipidic, mono-rhamno-di-lipidic- and dirhamno- di-lipidic congeners.


Sign in / Sign up

Export Citation Format

Share Document