Research on Dynamic Model of Double Helical Gear Pair Based on TCA and LTCA
Numerous dynamic models of spur gears, helical gears, bevel gears, and face gears can be found in various studies. However, studies that focus on the dynamic model of a double helical gear pair are quite limited. The author proposed a model of a double helical gear pair by only considering the axial vibration. The author did not consider the friction and multiple backlashes in the proposed model. The friction force of the tooth surface and backlash are important factors that can cause complex non-linear phenomena in gear pairs. Therefore, a dynamic model of a double helical gear pair that takes into consideration the axial vibration, friction and multiple backlashes is proposed. Firstly, based on the tooth contact analysis (TCA) of a double helical gear pair, the path of contact and meshing time from engagement to disengagement are obtained. The formula for determining the sliding friction coefficient is introduced. Based on TCA and the dynamic meshing force provided by the subsequent dynamics model of double helical gear pair, the sliding friction coefficient of the tooth surface is calculated. Secondly, the stiffness excitation, gear-into impact excitation and error excitation (including the axial displacement caused by the errors of manufacture and installation under low speed) are calculated according to the existing research results. Following this, a dynamic model of a double helical gear pair that takes into consideration the axial vibration, friction and multiple backlashes is both built and solved. Finally, an example is presented to verify the corresponding results.