elastohydrodynamic lubrication
Recently Published Documents


TOTAL DOCUMENTS

1695
(FIVE YEARS 268)

H-INDEX

60
(FIVE YEARS 7)

Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Yuechang Wang ◽  
Abdullah Azam ◽  
Gaolong Zhang ◽  
Abdel Dorgham ◽  
Ying Liu ◽  
...  

Experimental results have confirmed that parallel rough surfaces can be separated by a full fluid film. However, such a lift-off effect is not expected by the traditional Reynolds theory. This paper proposes a deterministic mixed lubrication model to understand the mechanism of the lift-off effect. The proposed model considered the interaction between asperities and the micro-elastohydrodynamic lubrication (micro-EHL) at asperities within parallel rough surfaces for the first time. The proposed model is verified by predicting the measured Stribeck curve taken from literature and experiments conducted in this work. The simulation results highlight that the micro-EHL effect at the asperity scale is critical in building load-carrying capacity between parallel rough surfaces. Finally, the drawbacks of the proposed model are addressed and the directions of future research are pointed out.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuying Zhang ◽  
Yuanhao Zhang

Purpose This paper aims to study the effect of isosceles triangle micro concave texture with different parameters on the performance of oil seal to obtain a reasonable combination of parameters. Design/methodology/approach Based on the theory of elastohydrodynamic lubrication, a numerical model is established by coupling the texture parameters of isosceles triangle with concave lip with the two-dimensional average Reynolds equation considering surface roughness. Findings The results show that there is an optimal combination of parameters to improve the performance of the oil seal. When hp = 5µm-6.5 µm, a = 110°−130°, O = 1.4, C = 1.6 mm-2.2 mm, the oil seal with isosceles triangle micro concave texture can show good lubrication characteristics, friction characteristics and sealing ability. Originality/value The model provides a new idea for the design of new oil seal products and provides a theoretical support for the application of surface texture technology in the sealing field in the future.


2021 ◽  
pp. 1-29
Author(s):  
Ali Yalpanian ◽  
Raynald Guilbault

Abstract This study allows contact models based on semi-analytical methods including the impacts of thermoelastic deformations in contacts of finite dimension bodies. The proposed method controls heat flows crossing free boundaries. A comparison with FEA reveals that the proposed method can reduce the calculation times by more than 98%. The paper introduces the thermoelasticity effects into thermal-elastohydrodynamic lubrication (TEHL) modeling of line contact problems. The analysis reveals that including thermoelastic deformations changes the pressure profile and tends to localize the pressure close to the distribution center. Compared to TEHL simulations, the examined configurations caused an overall increase in the maximum pressure by about 9%, an overall film thickness reduction of about 7%, and an overall temperature increase of about 2 K.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8564
Author(s):  
Xiaozhou Hu ◽  
Jie Chen ◽  
Minggui Wu ◽  
Jianing Wang

To predict the temperature distribution of the tooth surface of a herringbone gear pair, a numerical method for the determination of frictional heat generation was proposed by establishing a thermal elastohydrodynamic lubrication (TEHL) model in the meshing zone taking surface roughness into account. According to the real micro topography of the tooth surface measured by a non-contact optical system and loaded tooth contact analysis, the friction coefficient was obtained by a TEHL analysis and then the heat generation in the contact zone was determined. With the combination of heat generation and heat dissipation analysis, the single tooth model of the herringbone gear pair due to the finite element method (FEM) was proposed and the steady-state temperature distribution of the tooth surfaces was predicted by FEM simulations. The simulation and the experimental results demonstrated good agreement, which verified the feasibility of the present numerical method.


Author(s):  
Ansheng Zhang ◽  
Jing Wang ◽  
Yiming Han ◽  
Jianjun Zhang ◽  
Yi Liu

For industrial roller or bush chains, the bush swings relative to the pin at working condition. If proper lubrication is maintained, an elastohydrodynamic lubrication contact is formed between the pin and the bush. In this study, a custom-made pin was used to replace the steel ball of a ball-disk test rig and optical interferometric experiments were carried out to study the effect of pin generatrix on the lubrication performance. The effects of generatrix shape, stroke length and oil supply condition on the lubrication state were explored. It is found that the change of the generatrix has an important influence on the oil film thickness, especially under rare oil supply condition.


Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 120
Author(s):  
Patricia M. Johns-Rahnejat ◽  
Ghodrat Karami ◽  
Reza Aini ◽  
Homer Rahnejat

This paper commemorates Ramsey Gohar by acknowledging his contributions to the fields of contact mechanics and elastohydrodynamic lubrication (EHL) within the context of the developments of these subjects. A historical discourse is provided on elastohydrodynamics, from its inception in the 1940s to present. We demonstrate that Ramsey Gohar was not only a pioneer in the discoveries and fundamentals of the subject, but also led or contributed significantly to continual advances in the understanding of EHL and its diverse applications.


Friction ◽  
2021 ◽  
Author(s):  
Pan Dou ◽  
Tonghai Wu ◽  
Zhaopeng Luo ◽  
Peiping Yang ◽  
Zhongxiao Peng ◽  
...  

AbstractRoller bearings support heavy loads by riding on an ultra-thin oil film (between the roller and raceway), the thickness of which is critical as it reflects the lubrication performance. Ultrasonic interfacial reflection, which facilitates the non-destructive measurement of oil-film thickness, has been widely studied. However, insufficient spatial resolution around the rolling line contact zone remains a barrier despite the use of miniature piezoelectric transducers. In this study, a finite-element-aided method is utilized to simulate wave propagation through a three-layered structure of roller-oil-raceway under elastohydrodynamic lubrication (EHL) with nonlinear characteristics of the i) deformed curvature of the cylindrical roller and ii) nonuniform distribution of the fluid bulk modulus along the circumference of the oil layer being considered. A load and speed-dependent look-up table is then developed to establish an accurate relationship between the overall reflection coefficient (directly measured by an embedded ultrasonic transducer) and objective variable of the central oil-film thickness. The proposed finite-element-aided method is verified experimentally in a roller-raceway test rig with the ultrasonically measured oil-film thickness corresponding to the values calculated using the EHL theory.


2021 ◽  
pp. 1-27
Author(s):  
Xianghua Meng ◽  
Jing Wang ◽  
Gyoko Nagayama

Abstract Temperature rise and film thickness reduction are the most important factors in elastohydrodynamic lubrication (EHL). In the EHL contact area, interfacial resistances (velocity/thermal slips) induced by the molecular interaction between lubricant and solid become significant due to the large surface/volume ratio. Although the velocity slip has been investigated extensively, less attention has been paid on the thermal slip in the EHL regime. In this study, numerical simulations were conducted by applying three cases of boundary slips to surfaces under sliding/rolling contacts moving in the same direction for the Newtonian thermal EHL. We found that the coupled velocity/thermal slips lead the most significant temperature rise and film thickness reduction among the three cases. The velocity slip results in a lower temperature in the lubricant and solids, whereas the thermal slip causes a temperature rise in the entire contact area as the film thickness decreases simultaneously. Furthermore, the effect of thermal slip on lubrication is more dominant than that of velocity slip while increases the entrainment velocity or slide–roll ratio.


Sign in / Sign up

Export Citation Format

Share Document