scholarly journals The basics of fermenting white cabbage

Author(s):  
E. S. Shishlova ◽  
N. E. Posokina ◽  
O. Yu. Lyalina

In this review, the fermentation process (lactic acid fermentation) of white cabbage is completely coveraged. Fermentation is a very complex dynamic process with numerous physical, chemical and microbiological changes affecting quality of the final product. The sequence of lactic acid bacteria development in the fermentation process, which is characterized by the growth and change of pools of various microorganisms, is described. In place of lactic acid microorganisms Leuconostoc mesenteroides comes Lactobacillus brevis, and then propagated Lactobacillus plantarum. The main factors to be taken into account in the fermentation and storage of sauerkraut are given. In order to start the spontaneous fermentation process, it is necessary that the lactic acid bacteria present on the surface of fresh raw materials prevail over the pathogenic microflora. At the same time, the use of starter cultures is a good alternative to natural fermentation, as this ensures the proper flow of the process and the finished product of good quality. The methods of heat treatment, such as pasteurization and sterilization, allowing to extend the shelf life of the finished fermented product. Various types of packaging that are best used for fermented products are also described: plastic bags, glass and metal cans. It is specified what hygienic norms should be observed at production of sauerkraut. It is shown that fermented (fermented) cabbage has probiotic properties that have a beneficial effect on the human body. It is noted that the use of lactic acid microorganisms (starter cultures) in the fermentation process of white cabbage favorably affects the whole process, as it suppresses the development of pathogenic and other undesirable microorganisms on the surface of fresh raw materials and allows to produce a product with improved functional properties.

Author(s):  
N. E. Posokina ◽  
E. S. Shishlova ◽  
A. I. Zakharova

Fermented cabbage is traditionally produced naturally, where under the action of lactic acid bacteria contained in raw materials, carbohydrates are converted into lactic acid. However, the direct fermentation process does not always lead to an optimal quality product. That is why the use of lactic acid microorganisms is a good alternative to the direct fermentation of cabbage, as with the help of starter cultures the process can be controlled. In this connection, the use of strains of lactic acid microorganisms allows to achieve rapid production of lactic and acetic acids and leads to a rapid decrease in pH, which in turn leads to the suppression of pathogenic microflora, and therefore to the creation of favorable conditions for the fermentation process. The aim of this study was to study the effect of consortia of lactic acid microorganisms on the dynamics of active and titratable acidity in the main stage of fermentation of white cabbage of the variety "Parus". For the study, the prepared modified model medium (MMC) from cabbage was used. In this work, we used lactic acid bacteria Leuconostoc mesenteroides and its consortia: L. mesenteroides + L. casei, L. mesenteroides + L. plantarum, L. mesenteroides + L. brevis, L. mesenteroides + L. casei + L. plantarum, L. mesenteroides + L. plantarum + L. brevis, L. mesenteroides + L. brevis + L. casei. Mathematical processing was carried out according to the obtained experimental data. Analysis of experimental data showed that at the main stage of fermentation the relationship of lactic acid microorganisms in the studied consortia was expressed by synergistic and antagonistic properties. In this case, the best results on the dynamics of growth of active and titratable acidity were obtained in consortiums L. mesenteroides + L. plantarum, L. mesenteroides + L. casei + L. plantarum, L. mesenteroides + L. plantarum + L. brevis.


2020 ◽  
Vol 50 (4) ◽  
pp. 749-762
Author(s):  
Vladimir Kondratenko ◽  
Natalia Posokina ◽  
Ol’ga Lyalina ◽  
Anastasiay Kolokolova ◽  
Sergey Glazkov

Introduction. Fermentative processing of plant raw materials is traditionally carried out using native (epiphytic) microflora, which is located on the surface and represented by lactic acid microorganisms. During this process, the carbohydrates in the raw material are metabolized into lactic acid. This process does not always result in optimal product quality as the raw material often lacks carbohydrates, the optimal conditions for the development of the target microflora are hard to achieve, the microflora might be inhibited by contaminants, etc. Lactic acid microbial consortia can act as a good alternative to spontaneous fermentation of cabbage as this method creates good conditions for the microbial synergistic interaction. Such fermentation process can be controlled by adjusting the carbohydrate composition of the substrate. The research objective was to develop an analytical approach to determine the minimum required degree of change in the native carbohydrate composition of substrate that would ensure the synergy of lactic acid microorganisms. Study objects and methods. The fermentation process was performed using white cabbage of Slava variety and such strains of lactic acid microorganisms as Lactobacillus casei VCM 536, Lactobacillus plantarum VCM B-578, and Lactobacillus brevis VCM B-1309, as well as their paired consortia. The raw material was subjected to grinding, and the epiphytic microflora was removed to create optimal conditions for the development of the lactic acid microflora. Results and discussion. The study made it possible to define the dynamics of carbohydrate fermentation in white cabbage by various strains of lactic bacteria and their paired consortia during processing. Mathematical models helped to describe the dynamics of glucose and fructose fermentation. The experiment also demonstrated the changes that occurred in the interaction within the paired consortia during fermentation. The paper introduces a new approach to determining the minimum required degree of change in the native carbohydrate composition required to ensure synergy of lactic acid microorganisms in paired consortia. Conclusion. The research defined the necessary amounts of carbohydrate needed to shift the integral factor of mutual influence towards sustainable synergy for three paired consortia. Consortium L. brevis + L. plantarum + 3.65 g/100 g of fructose proved to be the optimal variant for industrial production of sauerkraut from white cabbage of Slava variety. The developed approach can improve the existing industrial technologies of fermentation and create new ones.


2020 ◽  
Vol 8 (8) ◽  
pp. 1176 ◽  
Author(s):  
Tolulope Ashaolu ◽  
Anna Reale

Lactic acid fermentation is one of the oldest methods used worldwide to preserve cereals and vegetables. Europe and Asia have long and huge traditions in the manufacturing of lactic acid bacteria (LAB)-fermented foods. They have different cultures, religions and ethnicities with the available resources that strongly influence their food habits. Many differences and similarities exist with respect to raw substrates, products and microbes involved in the manufacture of fermented products. Many of them are produced on industrial scale with starter cultures, while others rely on spontaneous fermentation, produced homemade or in traditional events. In Europe, common LAB-fermented products made from cereals include traditional breads, leavened sweet doughs, and low and non-alcoholic cereal-based beverages, whereas among vegetable ones prevail sauerkraut, cucumber pickles and olives. In Asia, the prevailing LAB-fermented cereals include acid-leavened steamed breads or pancakes from rice and wheat, whereas LAB-fermented vegetables are more multifarious, such as kimchi, sinki, khalpi, dakguadong, jiang-gua, soidon and sauerkraut. Here, an overview of the main Euro-Asiatic LAB-fermented cereals and vegetables was proposed, underlining the relevance of fermentation as a tool for improving cereals and vegetables, and highlighting some differences and similarities among the Euro-Asiatic products. The study culminated in “omics”-based and future-oriented studies of the fermented products.


Author(s):  
NE Posokina ◽  
AI Zakharova

Introduction: Fermentation is a biotechnological process of preserving the biological potential of raw materials and transforming them in order to impart new organoleptic properties and to increase nutritional value of the product allowing diversification of daily meals; thus, in some countries fermented products make up a significant part of the human diet. Despite the fact that fermented products are very useful for humans, the fermentation process itself remained rather complicated for reproduction during a long time. Currently, starter cultures are used in industrial production of fermented food products enabling the production of foodstuffs with a guaranteed range of consumer properties. Such species of lactic acid bacteria as Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus, and Weissella play the main role in production of fermented food and drinks while L. mesenteroides plays the primary role in starting fermentation of many types of plant materials including cabbage, beet, turnip, cauliflower, green beans, chopped green tomatoes, cucumbers, olives, etc. Objective: To control and manage the industrial fermentation process, it is important to determine the main processes occurring at different stages and the types of lactic acid microorganisms responsible for initiation, continuation and completion of the process. Results: This review shows that, despite the variety of fermentable vegetables, L. mesenteroides species of lactic acid bacteria are of particular importance at the primary heteroenzymatic stage since during this very period the processed raw materials form conditions for inhibiting pathogenic and facultative pathogenic microflora and create optimal environment for subsequent development of targeted microorganisms determining the quality of finished products. Conclusions: When developing food technology, L. mesenteroides species of lactic acid bacteria must be an indispensable component of industrial starter cultures for obtaining final products of consistently high quality.6


2018 ◽  
pp. 86-88
Author(s):  
V. V. Kondratenko ◽  
N. E. Posokina ◽  
O. Yu. Lyalina

The article presents the results of the study of the directed fermentation of cucumbers using strains of lactic acid microorganisms (lactic acid bacteria) in order to intensify the fermentation process and to obtain a finished product of good quality (with good taste, aroma and structure), as on an industrial scale starter cultures are practically not used. The aim of our research was to study the dynamics of glucose degradation in the process of directed fermentation of cucumbers varieties "Vodoley" using lactic acid bacteria and their selection for this process. As strains of lactic acid microorganisms we selected the following: Lactobacillus casei VKM 536, Lactobacillus plantarum VKM V-578, Lactobacillus brevis VKM V-1309. In order to create optimal conditions for the development of the target microflora, to determine the degree of glucose destruction by various strains of microorganisms and to obtain comparative results, all experiments were carried out on model environment. During the research, mathematical models were developed that adequately describe the degree of glucose destruction during the fermentation of cucumbers. Mathematical processing of glucose degradation data in the direct fermentation process was carried out using Microsoft Excel and the SYSTAT TableCurve 2D. It was found that the criterion for the intensity of glucose destruction during the fermentation of cucumbers varieties "Vodoley" is the most adequate use of the investigated strains of lactic acid bacteria L. brevis and L. plantarum. The use of these lactic acid bacteria provides maximum process efficiency (the maximum acceptable duration is 4,47 and 5,36 days when the degree of glucose destruction is more than 99% of the asymptotic value). The use of L. brevis and L. plantarum allows to achieve the maximum degree of glucose destruction, which indicates the potential usefulness of these types of lactic acid bacteria.


2019 ◽  
Vol 12 (1) ◽  
pp. 54-69 ◽  
Author(s):  
É. Laslo ◽  
É. György ◽  
A. Czikó

Abstract Fermented meat products represent an important segment of our alimentation. Obtaining these products is based on beneficial microorganism activity. In the case of traditional food products, these are commercial starters or autochthonous microflora. Fermentation of raw materials is mainly done by sugar metabolization of lactic acid bacteria (LAB). In addition, these microorganisms can have other beneficial properties too such as probiotic properties, antimicrobial compound production abilities, etc. In order to meet consumer demands, starter cultures are continuously developed to produce high-quality, healthy, and tasty products, thus contributing to guaranteeing microbiological safety and to improving one or more sensory characteristics, technological, nutritional, or health properties of the fermented products. The aim of our research is to determine the technological properties of autochthonous lactic acid bacteria originated from commercial fresh sausages in order to select and use them as potential starter cultures in the meat industry. In our work, we determined the relevant characteristics (such as salt tolerance, proteolytic activity, antimicrobial activity, and antibiotic resistance) of bacteria isolated from 16 fresh sausages. Based on our results, the studied bacterial isolates originated from sausages could be potentially used as autochthonous meat starter cultures.


2019 ◽  
pp. 80-84
Author(s):  
Nataliya E. Posokina ◽  
Anna I. Zakharova

Relevance Fermentation of vegetables is usually carried out in the traditional way (spontaneous fermentation using native microflora), but the quality of the finished product is difficult to predict. Very often, due to the low initial amount of lactic acid bacteria or their low activity, the result of the process remains unpredictable, which can lead to the loss of a significant amount of product. In the fermentation of vegetables involved several types of facultatively anaerobic lactic acid bacteria. In order to control the fermentation process and make it directed, it is necessary to study which lactic acid bacteria are involved in the fermentation process, the period in which their growth and death, and how it affects the organoleptic properties of the finished product, as well as to study the activity of lactic acid microorganisms in the fermentation process. When fermentation of vegetables are not only the original nutrients such as vitamin C, amino acids, dietary fibers, etc., but also develop functional microorganisms such as lactic acid bacteria. Fermentation has an important effect on the quality and taste, so it is very important to study the fermentation process, microbial diversity and changes in nutrients and chemical elements in the fermentation process. Reducing the rate or preventing microbial spoilage of food is based on four main principles: minimization of product contamination by microorganisms; suppression of growth and reproduction of microorganisms-contaminants; destruction of microorganisms-contaminants; removal of microorganisms-contaminants. Fermentation is based on a combination of the first three principles and is achieved by creating conditions for the growth of specific microorganisms that can give food the desired taste, aroma, texture and appearance. Results This review is devoted to the scientific aspects of vegetable fermentation, including crops that contribute to the creation of optimal conditions for the development of the main pool of lactic acid microorganisms, the production of finished products of high quality and the prevention of microbial spoilage. It is shown that at the first stage of fermentation lactobacilli of the genus L. mesenteroides play a determining role. It is their "work" to create optimal conditions for the development of the target lactic microflora depends on the quality of the finished product. This fact should be taken into account when creating industrial bacterial starter cultures – "starter cultures" for the directed process of fermentation of vegetables.


2018 ◽  
pp. 81-85
Author(s):  
N. E. Posokina ◽  
O. Yu. Lyalina ◽  
E. S. Shishlova ◽  
A. I. Zakharova

Fermentation is a very complex dynamic process with numerous chemical, physical, and microbiological changes affecting the quality of the finished product. At present, in the industry starter cultures are practically not used, which leads to large losses of finished products (up to 40 %). The use of starter cultures allows not only to obtain high quality products, but also to significantly reduce production losses. The aim of the research was to study the process of directed fermentation of white cabbage variety "Slava" using strains of lactic acid bacteria and their consortium, taking into account the degree of their mutual influence. The following lactobacilli were used as strains of lactic acid bacteria – Lactobacillus brevis VKM V1309, Lactobacillus plantarum VKM V-578. Experiments were carried out on model media to obtain comparative data. In the process of directional fermentation using strains of lactic acid microorganisms and their consortium for the first time studied the dynamics of changes in quality indicators. Mathematical models developed in the course of research adequately describe the degree of destruction of glucose and fructose during fermentation. The model medium was made of white cabbage (raw material) for research, for this purpose it was subjected to homogenization and sterilization in order to create optimal conditions for the development of the target microflora and to determine the degree of destruction of glucose and fructose by various strains of lactic acid microorganisms. In the process of research, we found that the use of a consortium of lactic acid bacteria (L. brevis + L. plantarum) for this culture medium is impractical, but the addition of fructose in the amount of 0,5% by weight of the model medium can significantly intensify the process of fermentation of white cabbage.


2020 ◽  
pp. 99-103
Author(s):  
J. A. Semenova ◽  
N. E. Posokina ◽  
V. I. Tereshonok

Relevance. The use of certain single or mixed cultures of lactic acid microorganisms and the mandatory control of the fermentation process of white cabbage are of great importance to ensure that the product is of stable quality without the need for any chemical preservatives or harsh processing conditions. Carbohydrates contained in raw materials play an important role in this process, since carbohydrates are the main source of maintaining the viability of lactic acid microorganisms. By adjusting the carbohydrate component of raw materials at different stages of fermentation, it is possible to maintain a high titer of microorganisms, while obtaining not only a high-quality product, but also giving it, along with prebiotic (a source of fiber) and probiotic properties. Materials and methods. The purpose of this research work was to ensure the direction of the biotechnological process in the direction of stabilization of the concentration of functional microflora (starting systems of lactic acid microorganisms), under the influence of introduced carbohydrate nutrients. In this work, we studied two fermentation systems of microorganisms that are fundamental microorganisms in the fermentation of cabbage, namely, systems consisting of a pre-fermentation culture of Leuconostoc mesenteroides and one of the cultures of lactobacilli: Lactobacillus plantarum or Lactobacillus brevis. The study used the usual microbiological method for determining the number of microorganisms by seeding in an agarized culture medium, as well as processing experimental data. Results. As a result, we found that the introduction of a carbohydrate Supplement allows us to stabilize the dynamics of changes in the concentration of the studied starting systems at the same initial level throughout the main stage of fermentation.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 768
Author(s):  
Christos Bontsidis ◽  
Athanasios Mallouchos ◽  
Antonia Terpou ◽  
Anastasios Nikolaou ◽  
Georgia Batra ◽  
...  

On the frame of this research survey, a novel potentially probiotic strain (Lactobacillus paracasei SP5) recently isolated from kefir grains was evaluated for chokeberry juice fermentation. Chokeberry juice was retrieved from the variety Aronia melanocarpa, a plant known to provide small, dark berries and to be one of the richest sources of antioxidants. The juice was subsequently fermented inoculating L. paracasei SP5 for 48 h at 30 °C. The fermented juices were left at 4 °C and tested regarding microbiological and physicochemical characteristics for 4 weeks. The potentially probiotic strain was proved capable of performing lactic acid fermentation at 30 °C. Cell viability of L. paracasei was detected in high levels during fermentation and the whole storage period, while the fermented juice showed higher levels of viability in juice with 40.3 g/L of initial sugar concentration. No ethanol was detected in the final fermented juice. Fermented chokeberry juice was characterized by aromatic desirable volatiles, which were retained in adequate levels for the whole storage period. Specifically, the occurrence of organic esters detected in fermented juices is considered as positive evidence of the provision of fruity and floral notes to the final product. During storage, total phenolics content and antioxidant activity were observed in higher levels in fermented chokeberry juice compared with non-fermented juice. Subsequently, fermentation of chokeberry juice by potentially probiotic lactic acid bacteria could provide high industrialization potential, providing the market with a nutritional beverage of good volatile quality with an enhanced shelf-life compared with an unfermented fresh juice.


Sign in / Sign up

Export Citation Format

Share Document