scholarly journals THE USE OF LACTIC ACID BACTERIA IN THE PROCESS OF DIRECTED FERMENTATION OF A WHITE CABBAGE

2018 ◽  
pp. 81-85
Author(s):  
N. E. Posokina ◽  
O. Yu. Lyalina ◽  
E. S. Shishlova ◽  
A. I. Zakharova

Fermentation is a very complex dynamic process with numerous chemical, physical, and microbiological changes affecting the quality of the finished product. At present, in the industry starter cultures are practically not used, which leads to large losses of finished products (up to 40 %). The use of starter cultures allows not only to obtain high quality products, but also to significantly reduce production losses. The aim of the research was to study the process of directed fermentation of white cabbage variety "Slava" using strains of lactic acid bacteria and their consortium, taking into account the degree of their mutual influence. The following lactobacilli were used as strains of lactic acid bacteria – Lactobacillus brevis VKM V1309, Lactobacillus plantarum VKM V-578. Experiments were carried out on model media to obtain comparative data. In the process of directional fermentation using strains of lactic acid microorganisms and their consortium for the first time studied the dynamics of changes in quality indicators. Mathematical models developed in the course of research adequately describe the degree of destruction of glucose and fructose during fermentation. The model medium was made of white cabbage (raw material) for research, for this purpose it was subjected to homogenization and sterilization in order to create optimal conditions for the development of the target microflora and to determine the degree of destruction of glucose and fructose by various strains of lactic acid microorganisms. In the process of research, we found that the use of a consortium of lactic acid bacteria (L. brevis + L. plantarum) for this culture medium is impractical, but the addition of fructose in the amount of 0,5% by weight of the model medium can significantly intensify the process of fermentation of white cabbage.

Author(s):  
E. S. Shishlova ◽  
N. E. Posokina ◽  
O. Yu. Lyalina

In this review, the fermentation process (lactic acid fermentation) of white cabbage is completely coveraged. Fermentation is a very complex dynamic process with numerous physical, chemical and microbiological changes affecting quality of the final product. The sequence of lactic acid bacteria development in the fermentation process, which is characterized by the growth and change of pools of various microorganisms, is described. In place of lactic acid microorganisms Leuconostoc mesenteroides comes Lactobacillus brevis, and then propagated Lactobacillus plantarum. The main factors to be taken into account in the fermentation and storage of sauerkraut are given. In order to start the spontaneous fermentation process, it is necessary that the lactic acid bacteria present on the surface of fresh raw materials prevail over the pathogenic microflora. At the same time, the use of starter cultures is a good alternative to natural fermentation, as this ensures the proper flow of the process and the finished product of good quality. The methods of heat treatment, such as pasteurization and sterilization, allowing to extend the shelf life of the finished fermented product. Various types of packaging that are best used for fermented products are also described: plastic bags, glass and metal cans. It is specified what hygienic norms should be observed at production of sauerkraut. It is shown that fermented (fermented) cabbage has probiotic properties that have a beneficial effect on the human body. It is noted that the use of lactic acid microorganisms (starter cultures) in the fermentation process of white cabbage favorably affects the whole process, as it suppresses the development of pathogenic and other undesirable microorganisms on the surface of fresh raw materials and allows to produce a product with improved functional properties.


2012 ◽  
Vol 03 (02) ◽  
pp. 207-211 ◽  
Author(s):  
Oluwafunmilayo Adeniran ◽  
Olusegun Atanda ◽  
Mojisola Edema ◽  
Olusola Oyewol

2021 ◽  
pp. 40-42
Author(s):  
Светлана Юрьевна Носкова ◽  
Мария Игоревна Зимина ◽  
Ольга Олеговна Бабич ◽  
Станислав Алексеевич Сухих ◽  
Александр Юрьевич Просеков ◽  
...  

Изучение биосовместимости молочнокислых бактерий и других микроорганизмов-антагонистов, выделенных из природных источников, является актуальной задачей. В данной работе впервые показано взаимное влияние изолятов молочно-кислых бактерий и других микроорганизмов-антагонистов при совместном культивировании. Установлено, что изолят 1 является биосовместимым с изолятами 6, 13, 19 и 20. Изолят 6 активно растет в присутствии изолятов 7, 8, 9, 10, 11, 13 и 16. Изолят 7 биосовместим с изолятами 6, 8, 9, 10, 11, 12, 13, 16, изолят 8 является биосовместимым с изолятами 6, 7, 9, 10, 11, 13 и 16. Для изолята 9 наблюдается биосовместимость с изолятами 6, 7, 8, 10, 11, 12, 13, 16, для изолята 10 - с изолятами 6, 7, 8, 9, 11, 13, 16. Изолят 11 показывает удовлетворительные ростовые характеристики при совместном культивировании с изолятами 6, 7, 8, 9, 10, 12, 13, 16. Изолят 12 биосовместим с изолятами 7, 8, 9, 10, 11, 13 и 16. Изолят 13 является биосовместимым с изолятами 6, 7, 8, 9, 10, 11, 12, 16. Изолят 16 биосовместим с изолятами 6, 7, 8, 9, 10, 11, 12, 13. Изолят 19 является биосовместимым с изолятами 1, 6, 13 и 20, изолят 20 - с изолятами 1, 6, 13 и 19. Полученные результаты позволяют сделать вывод о том, что изоляты 1, 6, 19 и 20 являются близкородственными, так же как изоляты 7, 8, 9, 10, 11, 12, 13 и 16. The study of the biocompatibility of lactic acid bacteria and other antagonist microorganisms isolated from natural sources is an urgent task. This work shows for the first time the mutual influence of isolates of lactic acid bacteria and other microorganisms-antagonists during co-cultivation. It was found that isolate 1 is biocompatible with isolates 6, 13, 19, and 20. Isolate 6 actively grows in the presence of isolates 7, 8, 9, 10, 11, 13, and 16. Isolate 7 is biocompatible with isolates 6, 8, 9, 10 , 11, 12, 13, 16, isolate 8 is biocompatible with isolates 6, 7, 9, 10, 11, 13 and 16. Isolate 9 is biocompatible with isolates 6, 7, 8, 10, 11, 12, 13, 16, for isolate 10 - with isolates 6, 7, 8, 9, 11, 13, 16. Isolate 11 shows satisfactory growth characteristics when co-cultivated with isolates 6, 7, 8, 9, 10, 12, 13, 16. Isolate 12 is biocompatible with isolates 7, 8, 9, 10, 11, 13 and 16. Isolate 13 is biocompatible with isolates 6, 7, 8, 9, 10, 11, 12, 16. Isolate 16 is biocompatible with isolates 6, 7, 8 , 9, 10, 11, 12, 13. Isolate 19 is biocompatible with isolates 1, 6, 13 and 20, isolate 20 - with isolates 1, 6, 13, and 19. The results obtained suggest that isolates 1, 6, 19 and 20 are closely related as well as isolates 7, 8, 9, 10, 11, 1 2, 13 and 16.


2020 ◽  
Vol 50 (4) ◽  
pp. 749-762
Author(s):  
Vladimir Kondratenko ◽  
Natalia Posokina ◽  
Ol’ga Lyalina ◽  
Anastasiay Kolokolova ◽  
Sergey Glazkov

Introduction. Fermentative processing of plant raw materials is traditionally carried out using native (epiphytic) microflora, which is located on the surface and represented by lactic acid microorganisms. During this process, the carbohydrates in the raw material are metabolized into lactic acid. This process does not always result in optimal product quality as the raw material often lacks carbohydrates, the optimal conditions for the development of the target microflora are hard to achieve, the microflora might be inhibited by contaminants, etc. Lactic acid microbial consortia can act as a good alternative to spontaneous fermentation of cabbage as this method creates good conditions for the microbial synergistic interaction. Such fermentation process can be controlled by adjusting the carbohydrate composition of the substrate. The research objective was to develop an analytical approach to determine the minimum required degree of change in the native carbohydrate composition of substrate that would ensure the synergy of lactic acid microorganisms. Study objects and methods. The fermentation process was performed using white cabbage of Slava variety and such strains of lactic acid microorganisms as Lactobacillus casei VCM 536, Lactobacillus plantarum VCM B-578, and Lactobacillus brevis VCM B-1309, as well as their paired consortia. The raw material was subjected to grinding, and the epiphytic microflora was removed to create optimal conditions for the development of the lactic acid microflora. Results and discussion. The study made it possible to define the dynamics of carbohydrate fermentation in white cabbage by various strains of lactic bacteria and their paired consortia during processing. Mathematical models helped to describe the dynamics of glucose and fructose fermentation. The experiment also demonstrated the changes that occurred in the interaction within the paired consortia during fermentation. The paper introduces a new approach to determining the minimum required degree of change in the native carbohydrate composition required to ensure synergy of lactic acid microorganisms in paired consortia. Conclusion. The research defined the necessary amounts of carbohydrate needed to shift the integral factor of mutual influence towards sustainable synergy for three paired consortia. Consortium L. brevis + L. plantarum + 3.65 g/100 g of fructose proved to be the optimal variant for industrial production of sauerkraut from white cabbage of Slava variety. The developed approach can improve the existing industrial technologies of fermentation and create new ones.


Author(s):  
Michele Rigon Spier ◽  
Marcia Rapacci ◽  
Silvia Deboni Dutcosky ◽  
Guilherme de Almeida Souza Tedrus

The application of mixed cultures of lactic acid bacteria (LAB) and yeasts in the baking process may improve a number of important properties of the final bakery products such as flavour, texture and retention of freshness compare to the traditional baker's yeast bread. This study offers the possibility for Brazilian bakers to improve the quality of their products. The methods of sponge-dough and direct-dough fermentation containing Lactobacillus brevis and yeast Saccharomyces cerevisiae were employed to verify the effect of mixed cultures in quality technology of sweet bread dough. According to the results, performance of the breads should be good, because the used flour forms a strong gluten network, retains gas and produces a highly expanded structure in the final bakery products. Sensorial evaluation demonstrated that sweet bread produced by sponge-dough fermentation was more acceptable in regard to softness and taste compared to bread produced by direct-dough fermentation.


2018 ◽  
pp. 86-88
Author(s):  
V. V. Kondratenko ◽  
N. E. Posokina ◽  
O. Yu. Lyalina

The article presents the results of the study of the directed fermentation of cucumbers using strains of lactic acid microorganisms (lactic acid bacteria) in order to intensify the fermentation process and to obtain a finished product of good quality (with good taste, aroma and structure), as on an industrial scale starter cultures are practically not used. The aim of our research was to study the dynamics of glucose degradation in the process of directed fermentation of cucumbers varieties "Vodoley" using lactic acid bacteria and their selection for this process. As strains of lactic acid microorganisms we selected the following: Lactobacillus casei VKM 536, Lactobacillus plantarum VKM V-578, Lactobacillus brevis VKM V-1309. In order to create optimal conditions for the development of the target microflora, to determine the degree of glucose destruction by various strains of microorganisms and to obtain comparative results, all experiments were carried out on model environment. During the research, mathematical models were developed that adequately describe the degree of glucose destruction during the fermentation of cucumbers. Mathematical processing of glucose degradation data in the direct fermentation process was carried out using Microsoft Excel and the SYSTAT TableCurve 2D. It was found that the criterion for the intensity of glucose destruction during the fermentation of cucumbers varieties "Vodoley" is the most adequate use of the investigated strains of lactic acid bacteria L. brevis and L. plantarum. The use of these lactic acid bacteria provides maximum process efficiency (the maximum acceptable duration is 4,47 and 5,36 days when the degree of glucose destruction is more than 99% of the asymptotic value). The use of L. brevis and L. plantarum allows to achieve the maximum degree of glucose destruction, which indicates the potential usefulness of these types of lactic acid bacteria.


2021 ◽  
Vol 913 (1) ◽  
pp. 012035
Author(s):  
M Amaro ◽  
M D Ariyana ◽  
B R Handayani ◽  
Nazaruddin ◽  
S Widyastuti ◽  
...  

Abstract Along with raising public awareness about health and increasing yogurt consumption, it is critical to improve the quality of the yogurt. The innovation of yogurt producing in terms of flavor variety is critical since it can entice consumers to consume yogurt. This innovation is possible through the use of high-nutrient plant components that have not been optimally exploited in the surrounding environment. The purpose of this study was to examine the quality of yogurt produced from a variety of raw materials and stabilized naturally using Eucheuma spinosum seaweed. This study used a completely randomized design with a single factor: the type of raw material utilized in the production of yogurt (corn, sweet potato, pumpkin, banana and pineapple). The parameters analyzed included total lactic acid content, pH, total lactic acid bacteria, bacterial viability, viscosity, and organoleptic qualities such as homogeneity and taste were examined using scoring and hedonic methods. The data were evaluated using an analysis of variance (ANOVA) with a significance level of 5%, and the significantly different data were further tested using an additional test of an honest significant difference (HSD). Results show that yogurt made from corn was the best treatment, with pH value of 4.28, total lactic acid content was 1.67%; viscosity was 74,67cP, total lactic acid bacteria was 11.02 log CFU/ml, the bacterial viability met the concentration as a probiotic drink with the decreasing number 0.21 log CFU/ml, scoring test homogeneity score was 3,21 (slightly homogenous), taste score was 3.08 (slightly sour) and hedonic score for homogeneity and taste were 3.29 and 3.25 respectively.


Author(s):  
Jorge Daniel Fonseca Blanco ◽  
Martha Del Pilar López Hernandez ◽  
Laura Sabrina Ortiz Galeano ◽  
Jenifer Criollo Nuñez ◽  
María Denis Lozano Tovar

Cocoa fermentation process is fundamental to generate flavors and aromas that are characteristics of chocolate. In Colombia, this process is carried out by microbiota that spontaneously colonizes cocoa beans, therefore the quality of the fermentation is inconsistent. Taking into account that the fermentation of cocoa beans is carried out by a consortium of microorganisms, the aim of thisresearch was to describe the effect of the addition of a specific mixture of yeasts, acetic acid bacteria, and lactic acid bacteria on the physicochemical and organolepticcharacteristics of cocoa beans (clone CCN 51). Isolates of two yeasts (Wickerhamomyces anomalus and Debaryomyces hansenii), three acetic acid bacteria (AAB), (Gluconobacter japonicus, Acetobacter tropicalis, and Acetobacter pasteurianus) and three lactic acid bacteria (LAB) (Pediococcus acidilactici, Lactobacillus brevis, and Lactobacillus plantarum) obtained fromprevious cocoa fermentations selected for their pectinases and acid production capacities in a specific mixture were used. Using the micro-fermentation technique, the effect of a biological starter was evaluated under different viable microorganismsratios (Yeasts: LAB: AAB as follows, 1: 1: 1, 1: 2: 2, 1: 2: 1, 1: 1: 2, 2: 1: 1, 2: 2: 1, 2: 1: 2, and 2: 2: 2). The concentration of each microorganism was standardized at 1x107 cfu/mL, then the biomass of 4 mL for ratio 1 and 8 mL for ratio 2 of each suspension of microorganisms was added at time zero. Different doses of inoculum were 0%, 1%, 2%, 3%, 4%, and 5% v/w mL inoculum/g cocoa beans. A beneficial effecton the sensory quality of cocoa beans was evidenced by the addition of microorganisms; the best proportion of microorganisms was 2:1:2 (yeasts:LAB:AAB) and the best inoculum dose was 3% (v/w) showing lower acidity, astringency, and bitterness, and emphasizing the cocoa flavors, fruity, nutty, and panela malt. 


2017 ◽  
Vol 56 (3) ◽  
pp. 197
Author(s):  
S. B. KARAGEORGIS (Σ.Β. ΚΑΡΑΓΕΩΡΓΗΣ) ◽  
D. K. PAPAGEORGIOU (Δ.Κ. ΠΑΠΑΓΕΩΡΓΙΟΥ) ◽  
A. I. MANTIS (Α.Ι. ΜΑΝΤΗΣ) ◽  
S. A. GEORGAKIS (Σ.Α ΓΕΩΡΓΑΚΗΣ)

The use of mesophilic lactic acid bacteria (LAB) in the manufacture of Feta cheese was studied. Five selected mesophilic strains, confirmed as Lactobacillus plantarum (2 strains), Lb. paracasei subsp. paracasein Lb. brevis and Lactococcus lactis subsp. lactis, isolated from ripened Feta and Teleme cheeses, were used in 7 different combinations, alone or in combination with Lb. delbrueckii subsp. bulgaricus and Streptococcus thermophilus (the control combination) for the manufacture of Feta cheese. Each combination of strains was used to prepare four different batches of Feta cheese, keeping all the other production parameters according to the traditional technology. The cheese batches were analyzed for bacteriological, chemical and sensory characteristics. The results showed that the populations of lactobacilli and lactococci increased from the beginning of the cheese manufacture reaching a population of more than 7.0 log10cfu/g. This level was maintained during the whole ripening period (60 days) and during the subsequent 60-day storage period. Only in batches prepared with the control combination F8 {Str. thermophilus I Lb. delbrueckii subsp. bulgaricus), did the population of LAB decline to 6.0 log10cfu/g at the end of the ripening period. Also, except for the yeast population which increased, in all other bacterial groups tested (coliforms, staphylococci, total contaminating bacteria, psychrotrophic bacteria, proteolytic and lipolytic bacteria) populations gradually decreased during the ripening period. Results of the chemical analysis showed a sharp increase in acidity (the cheese pH dropped to ca. 4.5 within 3-4 d) and, whereas the values of other chemical indices (moisture content, fat content and NaCl) were stabilized between the 15* and 30* day of ripening, proteolysis (nitrogen soluble in 12% TCA) and lipolysis (ADV) progressed throughout ripening. The assessment of the overall acceptance by the sensory panel was between "very good" and "excellent" for all cheeses. This suggests that the selected mesophilic starter cultures can be used alone or in combination with the traditional culture {Lb.delbrueckii subsp. bulgaricus I Str. thermophilus) in the production of Feta cheese, as the results of this work indicate that the wild (autochthonous) strains of Lb. plantarum and Lc. lactis subsp. Lactis are well adapted to the environmental conditions that prevail in Feta cheese. Batches prepared using these mesophilic starters received the highest score in the assessment of organoleptic quality of Feta cheese. Very good results were also obtained using the combination of the mesophilic starters Lb. brevis and Lc. lactis subsp. lactis or Lb. paracasei subsp. paracasei and Lc. lactis subsp. lactis alone or in combination with Lb. delbrueckii subsp. bulgaricus and Str. thermophilus.


Sign in / Sign up

Export Citation Format

Share Document