scholarly journals Visualizing Electromagnetic Vacuum by MRI

Author(s):  
Chandrika S. Chandrashekar ◽  
Annadanesh Shellikeri ◽  
S. Chandrashekar ◽  
Erika A. Taylor ◽  
Deanne M. Taylor

Based upon Maxwell's equations, it has long been established that oscillating electromagnetic (EM) fields incident upon a metal surface decay exponentially inside the conductor, leading to a virtual EM vacuum at sufficient depths. Magnetic resonance imaging (MRI) utilizes radiofrequency (r.f.) EM fields to produce images. Here we present the first visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several novel findings.We uncover unexpected MRI intensity patterns arising from two orthogonal pairs of faces of a metal strip, and derive formulae for their intensity ratios, revealing differing effective elemental volumes (voxels) underneath these faces.Further, we furnish chemical shift imaging (CSI) results that discriminate different faces (surfaces) of a metal block according to their distinct nuclear magnetic resonance (NMR) chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively.Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The fundamental nature of results presented here may impact bulk metal MRI and CSI across many fields.

Author(s):  
Chandrika S. Chandrashekar ◽  
Annadanesh Shellikeri ◽  
S. Chandrashekar ◽  
Erika A. Taylor ◽  
Deanne M. Taylor

Based upon Maxwell's equations, it has long been established that oscillating electromagnetic (EM) fields incident upon a metal surface decay exponentially inside the conductor, leading to a virtual EM vacuum at sufficient depths. Magnetic resonance imaging (MRI) utilizes radiofrequency (r.f.) EM fields to produce images. Here we present the first visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several novel findings.We uncover unexpected MRI intensity patterns arising from two orthogonal pairs of faces of a metal strip, and derive formulae for their intensity ratios, revealing differing effective elemental volumes (voxels) underneath these faces.Further, we furnish chemical shift imaging (CSI) results that discriminate different faces (surfaces) of a metal block according to their distinct nuclear magnetic resonance (NMR) chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively.Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The fundamental nature of results presented here may impact bulk metal MRI and CSI across many fields.


Author(s):  
Chandrika S. Chandrashekar ◽  
Annadanesh Shellikeri ◽  
S. Chandrashekar ◽  
Erika A. Taylor ◽  
Deanne M. Taylor

Based upon Maxwell's equations, it has long been established that oscillating electromagnetic (EM) fields incident upon a metal surface decay exponentially inside the conductor, leading to a virtual EM vacuum at sufficient depths. Magnetic resonance imaging (MRI) utilizes radiofrequency (r.f.) EM fields to produce images. Here we present the first visualization of an EM vacuum inside a bulk metal strip by MRI, amongst several novel findings. We uncover unexpected MRI intensity patterns arising from two orthogonal pairs of faces of a metal strip, and derive formulae for their intensity ratios. Further, we furnish chemical shift imaging (CSI) results that discriminate different faces (surfaces) of a metal block according to their distinct nuclear magnetic resonance (NMR) chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The fundamental nature of results presented here can impact and spur further development of bulk metal MRI and CSI across many fields.


2021 ◽  
Author(s):  
Silin Guo ◽  
WenTong Yi ◽  
Wenzhong Liu

Abstract In the paper, the temperature dependence of magnetic nanoparticle (MNP) paramagnetic chemical shift (paraSHIFT) was studied by magnetic resonance (MR) spectroscopy. Based on it, iron oxide MNPs are considered as MR shifting probes for determining the temperature in liquids. With the increase in measurement temperature of the MNP reagent with MNPs, the decrease of MNP magnetization would make the peak of spectroscopy shift to the higher chemical shift area. The peak shift is related to the magnetic susceptibility of MNPs, which can be determined by MR frequency as a function of temperature and particle size. Experiments on temperature-dependent chemical shifts are performed for MNP samples with different core sizes and the estimated temperature accuracy can achieve 0.1K. Combined with the contrast effect of magnetic nanoparticles in magnetic resonance imaging (MRI) at 3 T, this technology can realize temperature imaging.


2019 ◽  
Vol 23 (04) ◽  
pp. 405-418 ◽  
Author(s):  
James F. Griffith ◽  
Radhesh Krishna Lalam

AbstractWhen it comes to examining the brachial plexus, ultrasound (US) and magnetic resonance imaging (MRI) are complementary investigations. US is well placed for screening most extraforaminal pathologies, whereas MRI is more sensitive and accurate for specific clinical indications. For example, MRI is probably the preferred technique for assessment of trauma because it enables a thorough evaluation of both the intraspinal and extraspinal elements, although US can depict extraforaminal neural injury with a high level of accuracy. Conversely, US is probably the preferred technique for examination of neurologic amyotrophy because a more extensive involvement beyond the brachial plexus is the norm, although MRI is more sensitive than US for evaluating muscle denervation associated with this entity. With this synergy in mind, this review highlights the tips for examining the brachial plexus with US and MRI.


Endoscopy ◽  
2004 ◽  
Vol 36 (10) ◽  
Author(s):  
BP McMahon ◽  
JB Frøkjær ◽  
A Bergmann ◽  
DH Liao ◽  
E Steffensen ◽  
...  

2019 ◽  
pp. 10-23
Author(s):  
T. A. Akhadov ◽  
S. Yu. Guryakov ◽  
M. V. Ublinsky

For a long time, there was a need to apply magnetic resonance imaging (MRI) technique for lung visualization in clinical practice. The development of this method is stimulated by necessity of the emergence of an alternative to computed tomography, especially when radiation and injection of iodine-containing contrast agents are contraindicated or undesirable, for example, in pregnant women and children, people with intolerance to iodinated contrast. One of the reasons why lung MRI is still rarely used is lack of elaborated standardized protocols that would be adapted to clinical needs of medical society. This publication is a current literature review on the use of MRI in lung studies.


Sign in / Sign up

Export Citation Format

Share Document