scholarly journals Genome-Wide Identification and Expression Analyses of the Fibrillin Family Genes Reveal Their Involvement in the Photoprotection in Cucumber

Author(s):  
Inyoung Kim ◽  
Sang-Choon Lee ◽  
Eun-Ha Kim ◽  
Kiwhan Song ◽  
Tae-Jin Yang ◽  
...  

Fibrillin (FBN) is a plastid lipid-associated protein found in photosynthetic organisms from cyanobacteria to plants. In this study, 10 CsaFBN genes were identified in genomic DNA sequences of cucumber (Chinese long and Gy14) through database searches using the conserved domain of FBN and the 14 FBN genes of Arabidopsis. Phylogenetic analysis of CsaFBN protein sequences showed that there was no counterpart of Arabidopsis and rice FBN5 in the cucumber genome. FBN5 is essential for growth in Arabidopsis and rice; its absence in cucumber may be because of incomplete genome sequences or that another FBN carries out its functions. Among the 10 CsaFBN genes, CsaFBN1 and CsaFBN9 were the most divergent in terms of nucleotide sequences. Most of the CsaFBN genes were expressed in the leaf, stem, and fruit. CsaFBN4 showed the highest mRNA expression levels in various tissues, followed by CsaFBN6, CsaFBN1, and CsaFBN9. High-light stress combined with low temperature decreased photosynthetic efficiency and highly induced transcript levels of CsaFBN1, CsaFBN6, and CsaFBN11, which decreased after 24 h treatment. Transcript levels of the other seven genes were changed only slightly. This result suggests that CsaFBN1, CsaFBN6, and CsaFBN11 may be involved in photoprotection under high-light conditions at low temperature.

2020 ◽  
Author(s):  
Marie Chazaux ◽  
Stefano Caffarri ◽  
Juliane Da Graça ◽  
Stephan Cuiné ◽  
Magali Floriani ◽  
...  

AbstractPhotosynthetic organisms require acclimation mechanisms to regulate photosynthesis in response to light conditions. Here, two mutant alleles of ACCLIMATION OF PHOTOSYNTHESIS TO THE ENVIRONMENT 1 (ape1) have been characterized in Chlamydomonas reinhardtii. The ape1 mutants are photosensitive and show PSII photoinhibition during high light acclimation or under high light stress. The ape1 mutants retain more PSII super-complexes and have changes to thylakoid stacking relative to control strains during photosynthetic growth at different light intensities. The APE1 protein is found in all oxygenic phototrophs and encodes a 25 kDa thylakoid protein that interacts with the Photosystem II core complex as monomers, dimers and supercomplexes. We propose a model where APE1 bound to PSII supercomplexes releases core complexes and promotes PSII heterogeneity influencing the stacking of Chlamydomonas thylakoids. APE1 is a regulator in light acclimation and its function is to reduce over-excitation of PSII centres and avoid PSII photoinhibition to increase the resilience of photosynthesis to high light.


2017 ◽  
Vol 114 (38) ◽  
pp. E8110-E8117 ◽  
Author(s):  
Jun Liu ◽  
Robert L. Last

Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because—in nature—photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded byAt4g02530) is required for growth acclimation ofArabidopsis thalianaplants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented thatmph2mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover,mph2—and previously characterized PSII repair-defective mutants—exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.


2008 ◽  
Vol 55 (1) ◽  
pp. 183-190 ◽  
Author(s):  
Jerzy Kruk ◽  
Renata Szymańska

In the present study, xanthophyll composition of eight parasitic Cuscuta species under different light conditions was investigated. Neoxanthin was not detected in four of the eight species examined, while in others it occurred at the level of several percent of total xanthophylls. In C. gronovii and C. lupuliformis it was additionally found that the neoxanthin content was considerably stimulated by strong light. In dark-adapted plants, lutein epoxide level amounted to 10-22% of total xanthophylls in only three species, the highest being for C. lupuliformis, while in others it was below 3%, indicating that the lutein epoxide cycle is limited to only certain Cuscuta species. The obtained data also indicate that the presence of the lutein epoxide cycle and of neoxanthin is independent and variable among the Cuscuta species. The xanthophyll cycle carotenoids violaxanthin, antheraxanthin and zeaxanthin were identified in all the examined species and occurred at the level found in other higher plants. The xanthophyll and lutein epoxide cycle pigments showed typical response to high light stress. The obtained results also suggest that the ability of higher plants to synthesize lutein epoxide probably does not depend on the substrate specificity of zeaxanthin epoxidase but on the availability of lutein for the enzyme.


2002 ◽  
Vol 29 (1) ◽  
pp. 13 ◽  
Author(s):  
Fernando Broetto ◽  
Ulrich Lüttge ◽  
Rafael Ratajczak

The metabolic switch from C3-photosynthesis to crassulacean acid metabolism (CAM),and the antioxidative response of Mesembryanthemum crystallinum L. plants cultured under severe salt stress and high light intensities, and a combination of both stress conditions, were studied. High light conditions led to a more rapid CAM induction than salinity. The induction time was still shortened when both stress factors were combined. A main pattern observed in CAM plants was a decrease in mitochondrial Mn–superoxide dismutase (SOD) activity during the day. The activities of the chloroplastic Fe–SOD and cytosolic CuZn–SOD were increased due to salt treatment after a lag phase, while catalase activity was decreased. Combination of salt and light stress did not lead to a higher SOD activity as found after application of one stress factor alone, indicating that there is a threshold level of the oxidative stress response. The fact that salt-stressed plants grown under high light conditions showed permanent photoinhibition and lost the ability for nocturnal malate storage after 9 d of treatment indicate serious malfunction of metabolism, leading to accelerated senescence. Comparison of CuZn–SOD activity with CuZn–SOD protein amount, which was determined immunologically, indicates that the activity of the enzyme is at least partially post-translationally regulated.


2020 ◽  
Vol 56 (3) ◽  
pp. 649-661 ◽  
Author(s):  
Fátima Míguez ◽  
Andreas Holzinger ◽  
Beatriz Fernandez‐Marin ◽  
José I. García‐Plazaola ◽  
Ulf Karsten ◽  
...  

2001 ◽  
Vol 56 (5-6) ◽  
pp. 369-374 ◽  
Author(s):  
Maya Velitchkova ◽  
Antoaneta Popova ◽  
Tzvetelina Markova

The relationship between thylakoid membrane fluidity and the process of photoinhibition at room and low (4 °C) temperature was investigated. Two different membrane perturbing agents - cholesterol and benzylalcohol were applied to manipulate the fluidity of isolated pea thylakoids. The photochemical activity of photosystem I (PSI) and photosystem II (PSII), polarographically determined, were measured at high light intensity for different time of illumination at both temperatures. The exposure of cholesterol- and benzylalcohol-treated thylakoid membranes to high light intensities resulted in inhibition of both studied photochemical activities, being more pronounced for PSII compared to PSI. Time dependencies of inhibition of PSI and PSII electron transport rates for untreated and membranes with altered fluidity were determined at 20 °C and 4 °C. The effect is more pronounced for PSII activity during low-temperature photoinhibition. The data are discussed in terms of the determining role of physico-chemical properties of thylakoid membranes for the response of photosynthetic apparatus to light stress.


Forests ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Yanpeng Dong ◽  
Ying Qu ◽  
Rui Qi ◽  
Xue Bai ◽  
Geng Tian ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Ning Wang ◽  
Tianyu Ji ◽  
Xiao Liu ◽  
Qiang Li ◽  
Kulihong Sairebieli ◽  
...  

Seedlings in regenerating layer are frequently attacked by herbivorous insects, while the combined effects of defoliation and shading are not fully understood. In the present study, two Leguminosae species (Robinia pseudoacacia and Amorpha fruticosa) were selected to study their responses to combined light and defoliation treatments. In a greenhouse experiment, light treatments (L+, 88% vs L−, 8% full sunlight) and defoliation treatments (CK, without defoliation vs DE, defoliation 50% of the upper crown) were applied at the same time. The seedlings’ physiological and growth traits were determined at 1, 10, 30, and 70 days after the combined treatment. Our results showed that the effects of defoliation on growth and carbon allocation under high light treatments in both species were mainly concentrated in the early stage (days 1–10). R. pseudoacacia can achieve growth recovery within 10 days after defoliation, while A. fruticosa needs 30 days. Seedlings increased SLA and total chlorophyll concentration to improve light capture efficiency under low light treatments in both species, at the expense of reduced leaf thickness and leaf lignin concentration. The negative effects of defoliation treatment on plant growth and non-structural carbohydrates (NSCs) concentration in low light treatment were significantly higher than that in high light treatment after recovery for 70 days in R. pseudoacacia, suggesting sufficient production of carbohydrate would be crucial for seedling growth after defoliation. Plant growth was more sensitive to defoliation and low light stress than photosynthesis, resulting in NSCs accumulating during the early period of treatment. These results illustrated that although seedlings could adjust their resource allocation strategy and carbon dynamics in response to combined defoliation and light treatments, individuals grown in low light conditions will be more suppressed by defoliation. Our results indicate that we should pay more attention to understory seedlings’ regeneration under the pressure of herbivorous insects.


2016 ◽  
Vol 18 (16) ◽  
pp. 11288-11296 ◽  
Author(s):  
Lorenzo Cupellini ◽  
Sandro Jurinovich ◽  
Ingrid G. Prandi ◽  
Stefano Caprasecca ◽  
Benedetta Mennucci

Photosynthetic organisms employ several photoprotection strategies to avoid damage due to the excess energy in high light conditions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Katsunori Yoshikawa ◽  
Kenichi Ogawa ◽  
Yoshihiro Toya ◽  
Seiji Akimoto ◽  
Fumio Matsuda ◽  
...  

AbstractIncreased tolerance to light stress in cyanobacteria is a desirable feature for their applications. Here, we obtained a high light tolerant (Tol) strain of Synechocystis sp. PCC6803 through an adaptive laboratory evolution, in which the cells were repeatedly sub-cultured for 52 days under high light stress conditions (7000 to 9000 μmol m−2 s−1). Although the growth of the parental strain almost stopped when exposed to 9000 μmol m−2 s−1, no growth inhibition was observed in the Tol strain. Excitation-energy flow was affected because of photosystem II damage in the parental strain under high light conditions, whereas the damage was alleviated and normal energy flow was maintained in the Tol strain. The transcriptome data indicated an increase in isiA expression in the Tol strain under high light conditions. Whole genome sequence analysis and reverse engineering revealed two mutations in hik26 and slr1916 involved in high light stress tolerance in the Tol strain.


Sign in / Sign up

Export Citation Format

Share Document