scholarly journals Transcriptome Analysis of the Biosynthesis of Anthocyanins in Begonia semperflorens under Low-Temperature and High-Light Conditions

Forests ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Yanpeng Dong ◽  
Ying Qu ◽  
Rui Qi ◽  
Xue Bai ◽  
Geng Tian ◽  
...  
Author(s):  
Inyoung Kim ◽  
Sang-Choon Lee ◽  
Eun-Ha Kim ◽  
Kiwhan Song ◽  
Tae-Jin Yang ◽  
...  

Fibrillin (FBN) is a plastid lipid-associated protein found in photosynthetic organisms from cyanobacteria to plants. In this study, 10 CsaFBN genes were identified in genomic DNA sequences of cucumber (Chinese long and Gy14) through database searches using the conserved domain of FBN and the 14 FBN genes of Arabidopsis. Phylogenetic analysis of CsaFBN protein sequences showed that there was no counterpart of Arabidopsis and rice FBN5 in the cucumber genome. FBN5 is essential for growth in Arabidopsis and rice; its absence in cucumber may be because of incomplete genome sequences or that another FBN carries out its functions. Among the 10 CsaFBN genes, CsaFBN1 and CsaFBN9 were the most divergent in terms of nucleotide sequences. Most of the CsaFBN genes were expressed in the leaf, stem, and fruit. CsaFBN4 showed the highest mRNA expression levels in various tissues, followed by CsaFBN6, CsaFBN1, and CsaFBN9. High-light stress combined with low temperature decreased photosynthetic efficiency and highly induced transcript levels of CsaFBN1, CsaFBN6, and CsaFBN11, which decreased after 24 h treatment. Transcript levels of the other seven genes were changed only slightly. This result suggests that CsaFBN1, CsaFBN6, and CsaFBN11 may be involved in photoprotection under high-light conditions at low temperature.


2014 ◽  
Vol 19 (4) ◽  
pp. 629-640
Author(s):  
Seong-Joo Hong ◽  
HyoJin Kim ◽  
Jin Hee Jang ◽  
Byung-Kwan Cho ◽  
Hyung-Kyoon Choi ◽  
...  

2017 ◽  
Vol 40 (1) ◽  
Author(s):  
Huitao Bi ◽  
Meili Guo ◽  
Jiawan Wang ◽  
Ying Qu ◽  
Wenli Du ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541a-541
Author(s):  
Lailiang Cheng ◽  
Leslie H. Fuchigami ◽  
Patrick J. Breen

Bench-grafted Fuji/M26 apple trees were fertigated with different concentrations of nitrogen by using a modified Hoagland solution for 6 weeks, resulting in a range of leaf N from 1.0 to 4.3 g·m–2. Over this range, leaf absorptance increased curvilinearly from 75% to 92.5%. Under high light conditions (1500 (mol·m–2·s–1), the amount of absorbed light in excess of that required to saturate CO2 assimilation decreased with increasing leaf N. Chlorophyll fluorescence measurements revealed that the maximum photosystem II (PSII) efficiency of dark-adapted leaves was relatively constant over the leaf N range except for a slight drop at the lower end. As leaf N increased, non-photochemical quenching under high light declined and there was a corresponding increase in the efficiency with which the absorbed photons were delivered to open PSII centers. Photochemical quenching coefficient decreased significantly at the lower end of the leaf N range. Actual PSII efficiency increased curvilinearly with increasing leaf N, and was highly correlated with light-saturated CO2 assimilation. The fraction of absorbed light potentially used for free radical formation was estimated to be about 10% regardless of the leaf N status. It was concluded that increased thermal dissipation protected leaves from photo-oxidation as leaf N declined.


1986 ◽  
Vol 41 (5-6) ◽  
pp. 597-603 ◽  
Author(s):  
Aloysius Wild ◽  
Matthias Höpfner ◽  
Wolfgang Rühle ◽  
Michael Richter

The effect of different growth light intensities (60 W·m-2, 6 W·m-2) on the performance of the photosynthetic apparatus of mustard plants (Sinapis alba L.) was studied. A distinct decrease in photosystem II content per chlorophyll under low-light conditions compared to high-light conditions was found. For P-680 as well as for Oᴀ and Oв protein the molar ratio between high-light and low-light plants was 1.4 whereas the respective concentrations per chlorophyll showed some variations for P-680 and Oᴀ on the one and Oв protein on the other hand.In addition to the study of photosystem II components, the concentrations of PQ, Cyt f, and P-700 were measured. The light regime during growth had no effect on the amount of P-700 per chlorophyll but there were large differences with respect to PQ and Cyt f. The molar ratio for Cyt f and PQ between high- and low-light leaves was 2.2 and 1.9, respectively.Two models are proposed, showing the functional organization of the pigment system and the electron transport chain in thylakoids of high-light and low-light leaves of mustard plants.


2016 ◽  
Vol 46 ◽  
pp. 50-59 ◽  
Author(s):  
Patrick Riga ◽  
Leyre Benedicto ◽  
Libia García-Flores ◽  
Débora Villaño ◽  
Sonia Medina ◽  
...  

Weed Science ◽  
1970 ◽  
Vol 18 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Lafayette Thompson ◽  
F. W. Slife ◽  
H. S. Butler

Corn(Zea maysL.) in the two to three-leaf stage grown 18 to 21 days in a growth chamber under cold, wet conditions was injured by postemergence application of 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) plus emulsifiable phytobland oil. Injury was most severe when these plants were kept under cold, wet conditions for 48 hr after the herbicidal spray was applied, followed by exposure to high light intensity and high temperature. Under these growth chamber conditions, approximately 50% of the atrazine-treated plants died. Since wet foliage before and after application increased foliar penetration and low temperature decreased the rate of detoxication to peptide conjugates, atrazine accumulated under cold, wet conditions. This accumulation of foliarly-absorbed atrazine and the “weakened” conditions of the plants grown under the stress conditions is believed to be responsible for the injury to corn. Hydroxylation and the dihydroxybenzoxazin-3-one content in the roots were reduced at low temperature, but it is unlikely that this contributed to the death of the corn.


Sign in / Sign up

Export Citation Format

Share Document