scholarly journals Assessment of the Current Energy Consumption of Residential Buildings in Jeddah, Saudi Arabia

Author(s):  
Ahmed Felimban ◽  
Alejandro Prieto ◽  
Ulrich Knaack ◽  
Tillmann Klein ◽  
Yasser Qaffas

In the Kingdom of Saudi Arabia (KSA), residential buildings’ energy consumption accounts for almost 50% of the building stock electricity consumption. The electricity generation consumes over one-third of the daily oil production. KSA was ranked as one of the highest countries in fossil fuel consumption per capita in 2014. Moreover, the KSA’s economy heavily relies on fossil fuel sources, namely oil reservoirs, whereby depletion will negatively affect the future development of the country. The total electricity consumption is annually growing by approximately 5-8%, which would lead to identical oil consumption to oil production in 2035. Currently, the KSA government is concerned to generate more renewable energy using large renewable energy plants. The government is investing in energy generation through renewable sources, by financing large scale photovoltaic farms to stop an economic crisis that may occur in 2035. The existing building stock consumes around 80% of the total current Saudi electricity that is generated. According to the Saudi energy efficiency report, the primary energy consumption per capita is over three times higher than the world average. Therefore, the residential buildings need further assessment as to their current energy consumption. This research used a survey to explore current user behaviour in residential buildings energy performance in the city of Jeddah, KSA. The findings of the survey showed: • The buildings thermal properties were found to be poorly designed • The majority of users within the buildings prefer a room temperature of below 24 °C, which requires a massive amount of cooling • Due to the climate conditions and the cultural aspects of KSA, housing units are occupied for more than 18 hours per day • An increase in user awareness has helped to slightly improve residential buildings energy efficiency Knowing the current high energy consumption sources and causes and being able to define available opportunities for further developments on building thermal properties enhancements and how to increase user awareness to reach self-sustaining buildings is essential.

Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 163 ◽  
Author(s):  
Ahmed Felimban ◽  
Alejandro Prieto ◽  
Ulrich Knaack ◽  
Tillmann Klein ◽  
Yasser Qaffas

In the Kingdom of Saudi Arabia (KSA), residential buildings’ energy consumption accounts for almost 50% of the building stock electricity consumption. The KSA’s economy relies heavily on fossil fuel sources, namely oil reservoirs, whose depletion will negatively affect the future development of the country. The total electricity consumption is growing by approximately 5–8% annually, which would lead to oil production and oil consumption being equal in 2035. Therefore, residential buildings need further assessment as regards their current energy consumption. This research used a survey to explore current user behaviour in residential buildings’ energy performance in the city of Jeddah, KSA. The findings of the survey show that several factors impact the energy performance in residential buildings. First, the buildings’ thermal properties were found to be poorly designed. Second, the cultural aspects (family member role and generous hospitality), and the majority of users within the buildings preferring a room temperature of below 24 °C, requires a massive amount of cooling due to the climate conditions. Third, an increase in user awareness has helped to slightly improve residential buildings’ energy efficiency. Knowing the current high-energy-consumption sources and causes, being able to define opportunities for thermal properties’ enhancement, and increasing user awareness of how to achieve self-sustaining buildings are essential.


2021 ◽  
pp. 1420326X2110130
Author(s):  
Manta Marcelinus Dakyen ◽  
Mustafa Dagbasi ◽  
Murat Özdenefe

Ambitious energy efficiency goals constitute an important roadmap towards attaining a low-carbon society. Thus, various building-related stakeholders have introduced regulations targeting the energy efficiency of buildings. However, some countries still lack such policies. This paper is an effort to help bridge this gap for Northern Cyprus, a country devoid of building energy regulations that still experiences electrical energy production and distribution challenges, principally by establishing reference residential buildings which can be the cornerstone for prospective building regulations. Statistical analysis of available building stock data was performed to determine existing residential reference buildings. Five residential reference buildings with distinct configurations that constituted over 75% floor area share of the sampled data emerged, with floor areas varying from 191 to 1006 m2. EnergyPlus models were developed and calibrated for five residential reference buildings against yearly measured electricity consumption. Values of Mean Bias Error (MBE) and Cumulative Variation of Root Mean Squared Error CV(RMSE) between the models’ energy consumption and real energy consumption on monthly based analysis varied within the following ranges: (MBE)monthly from –0.12% to 2.01% and CV(RMSE)monthly from 1.35% to 2.96%. Thermal energy required to maintain the models' setpoint temperatures for cooling and heating varied from 6,134 to 11,451 kWh/year.


2011 ◽  
Vol 280 ◽  
pp. 147-151 ◽  
Author(s):  
Hong Guo ◽  
Min Fang Su ◽  
Xiao Jun Jin

Based on the current energy consumption situation of existing masonry-concrete residential buildings in China, it discussed the main energy-saving renovation policies and technologies. Taking existing masonry-concrete residential building of Taiyuan city as a case, it analyzed its heat loss situations, energy-saving renovation design and reconstruction technologies of building envelope. It discussed energy-saving renovation effects. Energy efficiency and indoor thermal environment improved significantly after energy-saving renovation. The building life is extended.


2020 ◽  
Vol 13 (2) ◽  
pp. 90-96
Author(s):  
E.V. Nezhnikova ◽  
◽  
M.V Chernyaev ◽  

The article presents the problems of ensuring energy efficiency of housing construction in the Russian Federation. Unfortunately, for a variety of reasons and, despite the existence of federal and regional legislation, today Russia does not pay due attention to this issue, which leads to an unreasonable increase in electricity consumption both during the creation of residential real estate objects and during their operation. 96 Экономические системы. 2020. № 2 Economic Systems. 2020. No. 2 The relevance of the topic is enhanced by significant energy consumption of residential buildings in use: more than 50% of electrical energy consumption falls on these real estate objects. Therefore, it is no coincidence, but a completely logical trend of the 21st century, that the governments of most countries popularized the idea of designing and building energy-efficient residential buildings. It was established that the improvement of domestic legislation in terms of energy efficiency has greatly improved the regulatory framework for the design and construction of energy-efficient residential real estate.


2020 ◽  
pp. 014459872097514
Author(s):  
AbdulRahman S Almushaikah ◽  
Radwan A Almasri

Lately, with the growth in energy consumption worldwide to support global efforts to improve the climate, developing nations have to take significant measures. Kingdom of Saudi Arabia (KSA) implemented meaningful policy actions towards promoting energy efficiency (EE) in several sectors, especially in the building sector, to be more sustainable. In this paper, various EE measures and solar energy prospects are investigated for the residential sector, in two locations in the middle region of the KSA. An energy performance analysis of pre-existing residential buildings with an overall design is performed using simulation programs. However, installing EE measures in the building envelope is important to achieve an efficient sector regarding its energy consumption. The findings showed that applying EE measures for the building envelope, walls, roof, and windows should be considered first that makes the energy conservation possible. In Riyadh, EE measures are responsible for reducing energy consumption by 27% for walls, 14% for roof, and 6% for window, and by 29%, 13%, and 6% for walls, roof, and windows, respectively, for Qassim. However, the most impactful EE solution was selecting a heating, ventilation, and air conditioning (HVAC) system with a high energy efficiency rate (EER), which can minimize the energy consumption by 33% and 32% for Riyadh and Qassim, respectively. The study's feasibility showed that the number of years needed to offset the initial investment for a proposed roof PV system exceeds the project's life, if the energy produced is exported to the grid at the official export tariff of 0.019 $/kWh. However, the simple payback time was 13.42 years if the energy produced is exported to the grid at a rate of 0.048 $/kWh, reflecting the project's economic feasibility.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 87 ◽  
Author(s):  
Jubran Alshahrani ◽  
Peter Boait

Electricity consumption in the Kingdom of Saudi Arabia (KSA) has grown at an annual rate of about 7% as a result of population and economic growth. The consumption of the residential sector accounts for over 50% of the total energy generation. Moreover, the energy consumption of air-conditioning (AC) systems has become 70% of residential buildings’ total electricity consumption in the summer months, leading to a high peak electricity demand. This study investigates solutions that will tackle the problem of high energy demand associated with KSA’s air-conditioning needs in residential buildings. To reduce the AC energy consumption in the residential sector, we propose the use of smart control in the thermostat settings. Smart control can be utilized by (i) scheduling and advance control of the operation of AC systems and (ii) remotely setting the thermostats appropriately by the utilities. In this study, we model typical residential buildings and, crucially, occupancy behavior based on behavioral data obtained through a survey. The potential impacts in terms of achievable electricity savings of different AC operation modes for residential houses of Riyadh city are presented. The results from our computer simulations show that the solutions intended to reduce energy consumption effectively, particularly in the advance mode of operation, resulted in a 30% to 40% increase in total annual energy savings.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4279 ◽  
Author(s):  
Moncef Krarti

The paper overviews the current energy demand trends in the building sector for the Arab region using reported historical energy consumption. Moreover, the paper describes the current energy efficiency policies and regulations for all the Arab countries specific to both residential and commercial buildings. Finally, the paper evaluates potential benefits for large-scale energy efficiency programs specific to new and existing building stocks within the Arab region using a bottom-up analysis approach. The analysis of the available energy consumption for all the Arab countries has shown that the Arab region presents a significant variation in energy consumption levels between its sub-regions and countries. Indeed, the Arab region includes oil-producing countries such as Saudi Arabia with the largest energy use per capita in the World with over 9000 kWh/person of electricity used annually in buildings. However, the same region has the least developed countries such as Sudan and Yemen with the lowest energy use per capita in the World with barely 100 kWh/person/year of electrical consumption. The review of the existing regulations has indicated that several Arab countries have not implemented any energy efficiency codes and standards for building envelope, lighting, heating and cooling equipment, and appliances. A cost-effectiveness analysis has indicated that the Arab region can incur significant benefits in upgrading the energy efficiency of its new and existing buildings especially its households. Specifically, the adoption and the enforcement of stringent energy efficiency codes for new residential and commercial buildings can result in a reduction of 12.7 TWh/year in final annual energy consumption for the Arab region. Moreover, retrofit programs targeting existing buildings can save up to 470 TWh or a third of the building sector final energy consumption per year after 2030. Combining comprehensive energy efficiency requirements for new buildings and extensive retrofit programs for existing buildings would reduce the total final energy consumption of the building sector in the Arab region by 600 TWh by 2030 and by 900 TWh by 2050 if all the energy programs start to be implemented by 2020.


2021 ◽  
Vol XXVIII (4) ◽  
pp. 27-33
Author(s):  
Corina Guțu-Chetrușca ◽  
◽  
Aurel Guțu ◽  

The anti-COVID restrictions have resulted in a reduction of the total world energy consumption. At the same time, the transfer of the activities to home increased the household consumption of electricity by up to 30%. In the Republic of Moldova, the total electricity consumption in 2020 decreased compared to 2019 by 0.22 %, while household consumption increased by 3.5%. In the first quarter of 2021, household consumption increased by 7.8%, raising the share of household consumption to 45.5 %. Working from home has proven to be convenient for both employees and employers, so the trend is expected to remain after the pandemic crisis. In this context, a series of energy efficiency and renewable energy solutions in residential buildings are expected to be implemented.


2021 ◽  
Vol 13 (8) ◽  
pp. 4099
Author(s):  
Ann-Kristin Mühlbach ◽  
Olaf Mumm ◽  
Ryan Zeringue ◽  
Oskars Redbergs ◽  
Elisabeth Endres ◽  
...  

The METAPOLIS as the polycentric network of urban–rural settlement is undergoing constant transformation and urbanization processes. In particular, the associated imbalance of the shrinkage and growth of different settlement types in relative geographical proximity causes negative effects, such as urban sprawl and the divergence of urban–rural lifestyles with their related resource, land and energy consumption. Implicitly related to these developments, national and global sustainable development goals for the building sector lead to the question of how a region can be assessed without detailed research and surveys to identify critical areas with high potential for sustainable development. In this study, the TOPOI method is used. It classifies settlement units and their interconnections along the urban–rural gradient, in order to quantify and assess the land-uptake and global warming potential driven by residential developments. Applying standard planning parameters in combination with key data from a comprehensive life cycle assessment of the residential building stock, a detailed understanding of different settlement types and their associated resource and energy consumption is achieved.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4046 ◽  
Author(s):  
Sooyoun Cho ◽  
Jeehang Lee ◽  
Jumi Baek ◽  
Gi-Seok Kim ◽  
Seung-Bok Leigh

Although the latest energy-efficient buildings use a large number of sensors and measuring instruments to predict consumption more accurately, it is generally not possible to identify which data are the most valuable or key for analysis among the tens of thousands of data points. This study selected the electric energy as a subset of total building energy consumption because it accounts for more than 65% of the total building energy consumption, and identified the variables that contribute to electric energy use. However, this study aimed to confirm data from a building using clustering in machine learning, instead of a calculation method from engineering simulation, to examine the variables that were identified and determine whether these variables had a strong correlation with energy consumption. Three different methods confirmed that the major variables related to electric energy consumption were significant. This research has significance because it was able to identify the factors in electric energy, accounting for more than half of the total building energy consumption, that had a major effect on energy consumption and revealed that these key variables alone, not the default values of many different items in simulation analysis, can ensure the reliable prediction of energy consumption.


Sign in / Sign up

Export Citation Format

Share Document