SOME ASPECTS OF ENERGY EFFICIENCY IN HOUSING CONSTRUCTION IN RUSSIA

2020 ◽  
Vol 13 (2) ◽  
pp. 90-96
Author(s):  
E.V. Nezhnikova ◽  
◽  
M.V Chernyaev ◽  

The article presents the problems of ensuring energy efficiency of housing construction in the Russian Federation. Unfortunately, for a variety of reasons and, despite the existence of federal and regional legislation, today Russia does not pay due attention to this issue, which leads to an unreasonable increase in electricity consumption both during the creation of residential real estate objects and during their operation. 96 Экономические системы. 2020. № 2 Economic Systems. 2020. No. 2 The relevance of the topic is enhanced by significant energy consumption of residential buildings in use: more than 50% of electrical energy consumption falls on these real estate objects. Therefore, it is no coincidence, but a completely logical trend of the 21st century, that the governments of most countries popularized the idea of designing and building energy-efficient residential buildings. It was established that the improvement of domestic legislation in terms of energy efficiency has greatly improved the regulatory framework for the design and construction of energy-efficient residential real estate.

2018 ◽  
pp. 5-15
Author(s):  
Lyudmila Swistun ◽  
Taina Zavora ◽  
Yuliia Khudolii

The main goal of the study is to analyse the residential real estate market in Ukraine from the point of view of the need and the possibility of increasing its energy efficiency. Also, it aims to justify effective financial and credit mechanisms for ensuring measures to improve the thermal protection properties of residential and non- residential real estate, in particular by introducing energy efficiency development projects. With this research we investigated Ukraine's housing stock and utility tariffs and concluded that a beneficial strategy to be applied in Ukraine is the energy-efficient retrofit of real estate. This is one of the most effective ways to re-profile unclaimed real estate units in the existing state or to reconstruct inefficiently used buildings. Also, we reviewed selected methods of energy efficient residential real estate development and mechanisms of financing energy- efficient renovation of real estate used in the EU. And, in our view, the next step of the Ukraine in the direction of improving the energy efficiency of housing should be the effective operation of a dedicated/specific energy efficiency fund to ensure stable financing of housing modernization projects, which will allow for a comprehensive renovation of buildings and lead to significant annual energy savings in this end-use sector.


2019 ◽  
pp. 238-243
Author(s):  
Albert Olotuah A ◽  
Rukayyatu Tukur B ◽  
Kingsley Dimuna O ◽  
Abiodun Olotuah O ◽  
Olutunde Adesiji S ◽  
...  

Energy efficient houses consume less energy while maintaining or improving the comfort conditions of occupants. Energy efficient buildings result in less environmental impact and are economically and environmentally sustainable. Residential buildings account for the majority of electricity consumption in Nigeria. Because of the poor state of energy generation and transmission in Nigeria energy efficiency measures are necessary to reduce the energy required in houses. This would substantially reduce the dependence on the grid electricity supply. Energy efficient buildings have tremendous benefits in social, economic, and environmental terms. In economic terms the production of energy-efficient buildings result in growing market demand with higher quality and innovative buildings, and in social terms it leads to improved urban space and local climate, and liveable buildings. Energy efficient buildings also ensure resource efficiency, and reduction of Green House Gas emissions. Energy efficiency in buildings starts from the design of buildings, and through to construction and operation. The objective of this paper is the examination of energy efficiency in housing in Nigeria and its impact upon socio-economic development in the country. The paper focuses on energy-efficient design strategies, and initiatives to achieve low carbon emission in housing in Nigeria The paper examines the housing situation in Nigeria and the phenomenon of urbanisation which has led to unplanned urban growth, grievous housing poverty, slum formation, and near collapse of urban services and infrastructure particularly electricity supply. It affirms the need to adopt energy efficiency in housing and it examines passive design strategies and low carbon initiatives in housing construction. It takes a critical look at the adoption of sustainability practices in housing. The paper asserts that energy efficiency would enhance the growth of electricity consumption and boost the socio-economic development of the country. The paper concludes that energy efficiency is capable of engendering socio-economic development of the country particularly productivity and income growth.


2021 ◽  
Vol 13 (9) ◽  
pp. 5266
Author(s):  
Ahmed Abdelrady ◽  
Mohamed Hssan Hassan Abdelhafez ◽  
Ayman Ragab

Building insulation based on nanomaterials is considered one of the most effective means of reducing energy consumption in the hot desert climate. The application of an energy-efficient insulation system can significantly decrease the energy consumed via a building’s air-conditioning system during the summer. Hence, building insulation has become an interesting research topic, especially with regards to the use of insulation based on nanomaterials due to their low U-values. In the present study, the use of nano vacuum insulation panels (VIPs) or polystyrene foam in the walls enabled a significant reduction in the annual energy consumption, a savings of 23% compared to the uninsulated wall in a study in New Aswan City. The application of nanogel glazing to the windows (two layers of clear glass filled with the nanogel) achieved approximately 11% savings in annual energy. This savings, twice that obtained by using double-glazed windows, could be due to the low U-value of nanogel compared to the U-values of argon or air. The embedded nanogel layer between two layers of argon and two layers of single clear glass showed a significant reduction in annual energy consumption, saving 26% compared to the use of a single layer of glass. Moreover, the integration between this window and embedded walls with 50 mm of polystyrene foam exhibited a significant improvement of energy efficiency by 47.6% while presenting the lowest value of simple payback period (SPP). This research provides a way for buildings to be insulated to make them more energy efficient as well as attractive from the economic standpoint.


2021 ◽  
Author(s):  
Philip McKeen ◽  
Alan S. Fung

This paper examines the energy consumption of varying aspect ratio in multi-unit residential buildings in Canadian cities. The aspect ratio of a building is one of the most important determinants of energy efficiency. It defines the building surface area by which heat is transferred between the interior and exterior environment. It also defines the amount of building area that is subject to solar gain. The extent to which this can be beneficial or detrimental depends on the aspect ratio and climate. This paper evaluates the relationship between the geometry of buildings and location to identify a design vernacular for energy-efficient designs across Canada.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Samuel Ekung ◽  
Isaac Abiodun Odesola ◽  
Timothy Adewuyi

PurposeThe dearth of green standards (GS) in sub-Saharan Africa is alarming and the green cost premiums (GCP) in seeking certification in emerging markets are scanty. This paper studied the Building Energy-Efficiency Code of Nigeria (BEEC) and estimated the potential GCPs associated with the various energy-efficiency ratings.Design/methodology/approachThe study retrofitted 150 conventional residential bungalow and maisonette buildings using BEEC's energy-efficiency interventions and performed analytical estimating of the retrofitted designs. The mean cost premium associated with each energy-efficiency intervention is presented as well as their financial benefits and payback periods. The benefits are achievable financial-savings due to a reduction in energy consumption and savings in electricity payment estimated from the average energy demands of each building. An independent t-test was further conducted to determine the cost differential between energy-efficient design (ED) and conventional design over a five-year period.FindingsThe potential GCPs and their payback periods are actually less than feared. The study showed that less than 5% and 21% extra funding would be required to achieve 1 to 4-Star and 5-Star energy-efficiency ratings involving passive design interventions and photovoltaic systems. Passive and active design interventions produced a financial savings of $8.08/m2 in electricity payment and $2.84/m2 per annum in energy consumption reduction. The financial-savings ($10.92/m2) was objective to pay-off the GCPs in less than four years. The independent t-test analysis showed the cost of ED is more economical after four years into the project lifecycle.Originality/valueThe research provides cost benchmarks for navigating cost planning and budgetary decisions during ED implementation and births a departure point for advancing energy-efficient construction in developing markets from the rational economic decision perspective.


Author(s):  
O. A. Omitaomu ◽  
B. L. Bhaduri ◽  
C. S. Maness ◽  
J. B. Kodysh ◽  
A. M. Noranzyk

Energy efficiency is the lowest cost option being promoted for achieving a sustainable energy policy. Thus, there have been some innovations to reduce residential and commercial energy usage. There have also been calls to the utility companies to give customers access to timely, useful, and actionable information about their energy use, in order to unleash additional innovations in homes and businesses. Hence, some web-based tools have been developed for the public to access and compare energy usage data. In order to advance on these efforts, we propose a data analytics framework called Citizen Engagement for Energy Efficient Communities (CoNNECT). On the one hand, CoNNECT will help households to understand (i) the patterns in their energy consumption over time and how those patterns correlate with weather data, (ii) how their monthly consumption compares to other households living in houses of similar size and age within the same geographic areas, and (iii) what other customers are doing to reduce their energy consumption. We hope that the availability of such data and analysis to the public will facilitate energy efficiency efforts in residential buildings. These capabilities formed the public portal of the CoNNECT framework. On the other hand, CoNNECT will help the utility companies to better understand their customers by making available to the utilities additional datasets that they naturally do not have access to, which could help them develop focused services for their customers. These additional capabilities are parts of the utility portal of the CoNNECT framework. In this paper, we describe the CoNNECT framework, the sources of the data used in its development, the functionalities of both the public and utility portals, and the application of empirical mode decomposition for decomposing usage signals into mode functions with the hope that such mode functions could help in clustering customers into unique groups and in developing guidelines for energy conservation.


2021 ◽  
Vol 244 ◽  
pp. 05003
Author(s):  
Valeriy Mishchenko ◽  
Elena Gorbaneva ◽  
Elena Ovchinnikova ◽  
Kristina Sevryukova

The issue of including energy efficient measures in the overhaul of residential real estate has been discussed for several years. The relevance of this issue is increasing in connection with the requirements established at the state level to improve the energy efficiency of buildings. The article calculates the determination of the energy efficiency class of a residential property included in the “Regional program for the overhaul of common property in apartment buildings in the Voronezh region for 2014–2044”, after the implementation of energy efficiency measures. Improving energy efficiency is a strategic goal. However, energy efficiency improvements do not always lead to energy savings due to the “rebound effect”. Therefore, it is necessary to organize the implementation of energy-efficient measures during the overhaul of residential real estate and the implementation of energy-saving programs (municipal, regional, state, industry).


Author(s):  
Ahmed Felimban ◽  
Alejandro Prieto ◽  
Ulrich Knaack ◽  
Tillmann Klein ◽  
Yasser Qaffas

In the Kingdom of Saudi Arabia (KSA), residential buildings’ energy consumption accounts for almost 50% of the building stock electricity consumption. The electricity generation consumes over one-third of the daily oil production. KSA was ranked as one of the highest countries in fossil fuel consumption per capita in 2014. Moreover, the KSA’s economy heavily relies on fossil fuel sources, namely oil reservoirs, whereby depletion will negatively affect the future development of the country. The total electricity consumption is annually growing by approximately 5-8%, which would lead to identical oil consumption to oil production in 2035. Currently, the KSA government is concerned to generate more renewable energy using large renewable energy plants. The government is investing in energy generation through renewable sources, by financing large scale photovoltaic farms to stop an economic crisis that may occur in 2035. The existing building stock consumes around 80% of the total current Saudi electricity that is generated. According to the Saudi energy efficiency report, the primary energy consumption per capita is over three times higher than the world average. Therefore, the residential buildings need further assessment as to their current energy consumption. This research used a survey to explore current user behaviour in residential buildings energy performance in the city of Jeddah, KSA. The findings of the survey showed: • The buildings thermal properties were found to be poorly designed • The majority of users within the buildings prefer a room temperature of below 24 °C, which requires a massive amount of cooling • Due to the climate conditions and the cultural aspects of KSA, housing units are occupied for more than 18 hours per day • An increase in user awareness has helped to slightly improve residential buildings energy efficiency Knowing the current high energy consumption sources and causes and being able to define available opportunities for further developments on building thermal properties enhancements and how to increase user awareness to reach self-sustaining buildings is essential.


2021 ◽  
Author(s):  
Philip McKeen ◽  
Alan S. Fung

This paper examines the energy consumption of varying aspect ratio in multi-unit residential buildings in Canadian cities. The aspect ratio of a building is one of the most important determinants of energy efficiency. It defines the building surface area by which heat is transferred between the interior and exterior environment. It also defines the amount of building area that is subject to solar gain. The extent to which this can be beneficial or detrimental depends on the aspect ratio and climate. This paper evaluates the relationship between the geometry of buildings and location to identify a design vernacular for energy-efficient designs across Canada.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1068 ◽  
Author(s):  
Juliana May Sangoi ◽  
Enedir Ghisi

The objective of this paper was to compare primary energy consumption and energy efficiency during the operation phase of different types and combinations of water heating systems in single-family dwellings. Systems with an electric shower, liquefied petroleum gas heater, and solar heater with electric backup were analysed. The analysis was performed by means of computer simulation using EnergyPlus. Three Brazilian cities with different climates were assessed, i.e., Curitiba, Brasília and Belém. The systems were compared in terms of final energy and primary energy consumption. Results showed that systems with an electric shower, which have a lower water flow rate, led to lower primary energy consumption. The solar heating system combined with an electric shower was the option with the lowest energy consumption, and the solar heating system with a heating element in the storage tank was the option that consumed more energy. The systems were sized according to the requirements of the Brazilian energy efficiency labelling for residential buildings, and the efficiency level was compared to the results of primary energy consumption. The electric shower was found to be the third lowest energy consumer, but it was ranked the least energy efficient by Brazilian labelling, while systems with high energy consumption, such as gas heaters and solar heaters with a heating element in the storage tank, were ranked the most energy efficient. Therefore, a review of the requirements and methodology of the Brazilian energy efficiency labelling for residential buildings is recommended in order to encourage the use of truly efficient systems. Public policies that encourage solar heating systems should establish requirements regarding the configuration and sizing both the solar heating system and the backup system.


Sign in / Sign up

Export Citation Format

Share Document