scholarly journals SMARTdenovo: A de novo Assembler Using Long Noisy Reads

Author(s):  
Hailin Liu ◽  
Shigang Wu ◽  
Alun Li ◽  
Jue Ruan

Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. It also has been widely used to study structural variants, phase haplotypes and more. Here, we introduce the assembler— SMARTdenovo, which is an SMS assembler that follows the overlap-layout-consensus (OLC) paradigm. SMARTdenovo (RRID: SCR_017622) was designed to be a fast assembler that did not require highly accurate raw reads for error correction, unlike other, contemporaneous SMS assemblers. It has performed well for evaluating congeneric assemblers and has been successful for a variety of assembly projects. It is compatible with Canu for assembling high-quality genomes, and several of the assembly strategies in this program have been incorporated into subsequent popular assemblers. The assembler has been in use since 2015, and here we provide information on the development of SMARTdenovo and how to implement its algorithms into current projects.

Gigabyte ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hailin Liu ◽  
Shigang Wu ◽  
Alun Li ◽  
Jue Ruan

Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. It has also been widely used to study structural variants, phase haplotypes and more. Here, we introduce the assembler SMARTdenovo, a single-molecule sequencing (SMS) assembler that follows the overlap-layout-consensus (OLC) paradigm. SMARTdenovo (RRID: SCR_017622) was designed to be a rapid assembler, which, unlike contemporaneous SMS assemblers, does not require highly accurate raw reads for error correction. It has performed well in the evaluation of congeneric assemblers and has been successfully users for various assembly projects. It is compatible with Canu for assembling high-quality genomes, and several of the assembly strategies in this program have been incorporated into subsequent popular assemblers. The assembler has been in use since 2015; here we provide information on the development of SMARTdenovo and how to implement its algorithms into current projects.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yaoxi He ◽  
Xin Luo ◽  
Bin Zhou ◽  
Ting Hu ◽  
Xiaoyu Meng ◽  
...  

Abstract We present a high-quality de novo genome assembly (rheMacS) of the Chinese rhesus macaque (Macaca mulatta) using long-read sequencing and multiplatform scaffolding approaches. Compared to the current Indian rhesus macaque reference genome (rheMac8), rheMacS increases sequence contiguity 75-fold, closing 21,940 of the remaining assembly gaps (60.8 Mbp). We improve gene annotation by generating more than two million full-length transcripts from ten different tissues by long-read RNA sequencing. We sequence resolve 53,916 structural variants (96% novel) and identify 17,000 ape-specific structural variants (ASSVs) based on comparison to ape genomes. Many ASSVs map within ChIP-seq predicted enhancer regions where apes and macaque show diverged enhancer activity and gene expression. We further characterize a subset that may contribute to ape- or great-ape-specific phenotypic traits, including taillessness, brain volume expansion, improved manual dexterity, and large body size. The rheMacS genome assembly serves as an ideal reference for future biomedical and evolutionary studies.


GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sarah B Kingan ◽  
Julie Urban ◽  
Christine C Lambert ◽  
Primo Baybayan ◽  
Anna K Childers ◽  
...  

ABSTRACT Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


2018 ◽  
Author(s):  
Jolene T. Sutton ◽  
Martin Helmkampf ◽  
Cynthia C. Steiner ◽  
M. Renee Bellinger ◽  
Jonas Korlach ◽  
...  

AbstractGenome-level data can provide researchers with unprecedented precision to examine the causes and genetic consequences of population declines, and to apply these results to conservation management. Here we present a high-quality, long-read, de novo genome assembly for one of the world’s most endangered bird species, the Alala. As the only remaining native crow species in Hawaii, the Alala survived solely in a captive breeding program from 2002 until 2016, at which point a long-term reintroduction program was initiated. The high-quality genome assembly was generated to lay the foundation for both comparative genomics studies, and the development of population-level genomic tools that will aid conservation and recovery efforts. We illustrate how the quality of this assembly places it amongst the very best avian genomes assembled to date, comparable to intensively studied model systems. We describe the genome architecture in terms of repetitive elements and runs of homozygosity, and we show that compared with more outbred species, the Alala genome is substantially more homozygous. We also provide annotations for a subset of immunity genes that are likely to be important for conservation applications, and we discuss how this genome is currently being used as a roadmap for downstream conservation applications.


2021 ◽  
Author(s):  
Pei Wu ◽  
Chao Liu ◽  
Ou Wang ◽  
Xia Zhao ◽  
Fang Chen ◽  
...  

AbstractIn this paper, we report a pipeline, AsmMix, which is capable of producing both contiguous and high-quality diploid genomes. The pipeline consists of two steps. In the first step, two sets of assemblies are generated: one is based on co-barcoded reads, which are highly accurate and haplotype-resolved but contain many gaps, the other assembly is based on single-molecule sequencing reads, which is contiguous but error-prone. In the second step, those two sets of assemblies are compared and integrated into a haplotype-resolved assembly with fewer errors. We test our pipeline using a dataset of human genome NA24385, perform variant calling from those assemblies and then compare against GIAB Benchmark. We show that AsmMix pipeline could produce highly contiguous, accurate, and haplotype-resolved assemblies. Especially the assembly mixing process could effectively reduce small-scale errors in the long read assembly.


2018 ◽  
Author(s):  
Ou Wang ◽  
Robert Chin ◽  
Xiaofang Cheng ◽  
Michelle Ka Wu ◽  
Qing Mao ◽  
...  

Obtaining accurate sequences from long DNA molecules is very important for genome assembly and other applications. Here we describe single tube long fragment read (stLFR), a technology that enables this a low cost. It is based on adding the same barcode sequence to sub-fragments of the original long DNA molecule (DNA co-barcoding). To achieve this efficiently, stLFR uses the surface of microbeads to create millions of miniaturized barcoding reactions in a single tube. Using a combinatorial process up to 3.6 billion unique barcode sequences were generated on beads, enabling practically non-redundant co-barcoding with 50 million barcodes per sample. Using stLFR, we demonstrate efficient unique co-barcoding of over 8 million 20-300 kb genomic DNA fragments. Analysis of the genome of the human genome NA12878 with stLFR demonstrated high quality variant calling and phasing into contigs up to N50 34 Mb. We also demonstrate detection of complex structural variants and complete diploid de novo assembly of NA12878. These analyses were all performed using single stLFR libraries and their construction did not significantly add to the time or cost of whole genome sequencing (WGS) library preparation. stLFR represents an easily automatable solution that enables high quality sequencing, phasing, SV detection, scaffolding, cost-effective diploid de novo genome assembly, and other long DNA sequencing applications.


2021 ◽  
Author(s):  
Lauren Coombe ◽  
Janet X Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 2.0-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently runs in under five hours using less than 23GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


2018 ◽  
Author(s):  
Sarah B. Kingan ◽  
Haynes Heaton ◽  
Juliana Cudini ◽  
Christine C. Lambert ◽  
Primo Baybayan ◽  
...  

AbstractA high-quality reference genome is a fundamental resource for functional genetics, comparative genomics, and population genomics, and is increasingly important for conservation biology. PacBio Single Molecule, Real-Time (SMRT) sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. Improvements in throughput and concomitant reductions in cost have made PacBio an attractive core technology for many large genome initiatives, however, relatively high DNA input requirements (∼5 µg for standard library protocol) have placed PacBio out of reach for many projects on small organisms that have lower DNA content, or on projects with limited input DNA for other reasons. Here we present a high-quality de novo genome assembly from a single Anopheles coluzzii mosquito. A modified SMRTbell library construction protocol without DNA shearing and size selection was used to generate a SMRTbell library from just 100 ng of starting genomic DNA. The sample was run on the Sequel System with chemistry 3.0 and software v6.0, generating, on average, 25 Gb of sequence per SMRT Cell with 20 hour movies, followed by diploid de novo genome assembly with FALCON-Unzip. The resulting curated assembly had high contiguity (contig N50 3.5 Mb) and completeness (more than 98% of conserved genes are present and full-length). In addition, this single-insect assembly now places 667 (>90%) of formerly unplaced genes into their appropriate chromosomal contexts in the AgamP4 PEST reference. We were also able to resolve maternal and paternal haplotypes for over 1/3 of the genome. By sequencing and assembling material from a single diploid individual, only two haplotypes are present, simplifying the assembly process compared to samples from multiple pooled individuals. The method presented here can be applied to samples with starting DNA amounts as low as 100 ng per 1 Gb genome size. This new low-input approach puts PacBio-based assemblies in reach for small highly heterozygous organisms that comprise much of the diversity of life.


Genes ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 62 ◽  
Author(s):  
Sarah Kingan ◽  
Haynes Heaton ◽  
Juliana Cudini ◽  
Christine Lambert ◽  
Primo Baybayan ◽  
...  

A high-quality reference genome is a fundamental resource for functional genetics, comparative genomics, and population genomics, and is increasingly important for conservation biology. PacBio Single Molecule, Real-Time (SMRT) sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. Improvements in throughput and concomitant reductions in cost have made PacBio an attractive core technology for many large genome initiatives, however, relatively high DNA input requirements (~5 µg for standard library protocol) have placed PacBio out of reach for many projects on small organisms that have lower DNA content, or on projects with limited input DNA for other reasons. Here we present a high-quality de novo genome assembly from a single Anopheles coluzzii mosquito. A modified SMRTbell library construction protocol without DNA shearing and size selection was used to generate a SMRTbell library from just 100 ng of starting genomic DNA. The sample was run on the Sequel System with chemistry 3.0 and software v6.0, generating, on average, 25 Gb of sequence per SMRT Cell with 20 h movies, followed by diploid de novo genome assembly with FALCON-Unzip. The resulting curated assembly had high contiguity (contig N50 3.5 Mb) and completeness (more than 98% of conserved genes were present and full-length). In addition, this single-insect assembly now places 667 (>90%) of formerly unplaced genes into their appropriate chromosomal contexts in the AgamP4 PEST reference. We were also able to resolve maternal and paternal haplotypes for over 1/3 of the genome. By sequencing and assembling material from a single diploid individual, only two haplotypes were present, simplifying the assembly process compared to samples from multiple pooled individuals. The method presented here can be applied to samples with starting DNA amounts as low as 100 ng per 1 Gb genome size. This new low-input approach puts PacBio-based assemblies in reach for small highly heterozygous organisms that comprise much of the diversity of life.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Nathan LaPierre ◽  
Rob Egan ◽  
Wei Wang ◽  
Zhong Wang

Abstract Background Long read sequencing technologies such as Oxford Nanopore can greatly decrease the complexity of de novo genome assembly and large structural variation identification. Currently Nanopore reads have high error rates, and the errors often cluster into low-quality segments within the reads. The limited sensitivity of existing read-based error correction methods can cause large-scale mis-assemblies in the assembled genomes, motivating further innovation in this area. Results Here we developed a Convolutional Neural Network (CNN) based method, called MiniScrub, for identification and subsequent “scrubbing” (removal) of low-quality Nanopore read segments to minimize their interference in downstream assembly process. MiniScrub first generates read-to-read overlaps via MiniMap2, then encodes the overlaps into images, and finally builds CNN models to predict low-quality segments. Applying MiniScrub to real world control datasets under several different parameters, we show that it robustly improves read quality, and improves read error correction in the metagenome setting. Compared to raw reads, de novo genome assembly with scrubbed reads produces many fewer mis-assemblies and large indel errors. Conclusions MiniScrub is able to robustly improve read quality of Oxford Nanopore reads, especially in the metagenome setting, making it useful for downstream applications such as de novo assembly. We propose MiniScrub as a tool for preprocessing Nanopore reads for downstream analyses. MiniScrub is open-source software and is available at https://bitbucket.org/berkeleylab/jgi-miniscrub.


Sign in / Sign up

Export Citation Format

Share Document