scholarly journals Photoionization Cross Sections of Carbon-Like N+ near the K-Edge (390 eV - 440 eV)

Author(s):  
Jean-Paul Mosnier ◽  
Eugene T Kennedy ◽  
Jean-Marc Bizau ◽  
Denis Cubaynes ◽  
Ségolène Guilbaud ◽  
...  

High-resolution K-shell photoionization cross-sections for the C-like atomic nitrogen ion (N+) are reported in the 398 eV (31.15 Å) to 450 eV (27.55 Å) energy (wavelength) range. The results were obtained from absolute ion-yield measurements using the SOLEIL synchrotron radiation facility for spectral bandpasses of 65 meV or 250 meV. In the photon energy region 398 eV - 403 eV, 1s⟶2p autoionizing resonance states dominated the cross section spectrum. Analyses of the experimental profiles yielded resonance strengths and Auger widths. In the 415 eV - 440 eV photon region 1s⟶1s2s22p2 4Pnp and 1s⟶1s2s22p2 2Pnp resonances forming well-developed Rydberg series up n=7 and n=8 , respectively, were identified in both the single and double ionization spectra. Theoretical photoionization cross-section calculations, performed using the R-matrix plus pseudo-states (RMPS) method and the multiconfiguration Dirac-Fock (MCDF) approach were bench marked against these high-resolution experimental results. Comparison of the state-of-the-art theoretical work with the experimental studies allowed the identification of new resonance features. Resonance strengths, energies and Auger widths (where available) are compared quantitatively with the theoretical values. Contributions from excited metastable states of the N+ ions were carefully considered throughout.

Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 27
Author(s):  
Jean-Paul Mosnier ◽  
Eugene T. Kennedy ◽  
Jean-Marc Bizau ◽  
Denis Cubaynes ◽  
Ségolène Guilbaud ◽  
...  

High-resolution K-shell photoionization cross-sections for the C-like atomic nitrogen ion (N+) are reported in the 398 eV (31.15 Å) to 450 eV (27.55 Å) energy (wavelength) range. The results were obtained from absolute ion-yield measurements using the SOLEIL synchrotron radiation facility for spectral bandpasses of 65 meV or 250 meV. In the photon energy region 398–403 eV, 1s⟶2p autoionizing resonance states dominated the cross section spectrum. Analyses of the experimental profiles yielded resonance strengths and Auger widths. In the 415–440 eV photon region 1s⟶(1s2s22p2 4P)np and 1s⟶(1s2s22p2 2P)np resonances forming well-developed Rydberg series up n=7 and n=8 , respectively, were identified in both the single and double ionization spectra. Theoretical photoionization cross-section calculations, performed using the R-matrix plus pseudo-states (RMPS) method and the multiconfiguration Dirac-Fock (MCDF) approach were bench marked against these high-resolution experimental results. Comparison of the state-of-the-art theoretical work with the experimental studies allowed the identification of new resonance features. Resonance strengths, energies and Auger widths (where available) are compared quantitatively with the theoretical values. Contributions from excited metastable states of the N+ ions were carefully considered throughout.


2019 ◽  
Vol 486 (1) ◽  
pp. 245-250 ◽  
Author(s):  
Brendan M McLaughlin ◽  
James F Babb

Abstract Single photoionization cross-sections for Kr-like Rb+ ions are reported in the energy (wavelength) range from 22 (564 Å) to 46 eV (270 Å). Theoretical cross-section calculations for this trans-Fe element are compared with measurements from the ASTRID radiation facility in Aarhus, Denmark and from the dual laser plasma technique, at respectively 40 and 35 meV FWHM energy resolution. In the photon energy region 22–32 eV the spectrum is dominated by excitation auto-ionizing resonance states. Above 32 eV the cross-section exhibits classic Fano window resonances features, which are analysed and discussed. Large-scale theoretical photoionization cross-section calculations, performed using a Dirac Coulomb R-matrix approximation are benchmarked against these high-resolution experimental results. Comparison of the theoretical work with the experimental studies allowed the identification of resonance features and their parameters in the spectra in addition to contributions from excited metastable states of the Rb+ ions.


2015 ◽  
Vol 93 (11) ◽  
pp. 1221-1226 ◽  
Author(s):  
Indu Khatri ◽  
Arun Goyal ◽  
Sunny Aggarwal ◽  
A.K. Singh ◽  
Man Mohan

The photoionization cross section calculation for the ground state 1s22s22p6 1S (J = 0) of Ne-like W64+ has been performed in the close-coupling approximation using the Dirac–Coulomb R-matrix method. The resonance structures are analysed and described by finding the resonance energy positions of prominent Rydberg series 2s2p6(2S)np 1P0 for W LXV ion. To calculate fine structure energy levels, multi-configuration Dirac–Fock and relativistic distorted-wave methods have been employed. Wherever possible we have compared our work with the available data. The present results will be useful for diagnostics and modeling of plasma in ITER and other fusion devices.


2011 ◽  
Vol 84 (1) ◽  
Author(s):  
D. A. Esteves ◽  
R. C. Bilodeau ◽  
N. C. Sterling ◽  
R. A. Phaneuf ◽  
A. L. D. Kilcoyne ◽  
...  

2014 ◽  
Vol 92 (3) ◽  
pp. 241-245 ◽  
Author(s):  
Liang Liang ◽  
Xu-yang Liu ◽  
Chao Zhou

The relativistic R-matrix method is used to calculate the total photoionization cross sections from the ground state 1s22s2 1S0 of Al X for photon energies ranges from the first ionization threshold to just above the eighth threshold of the residual ion Al XI. In this work, the relativistic distorted-wave method is employed to calculate the fine-structure energy levels and radial functions. The lowest eight level target states of Al XI are used in the photoionization calculations of Al X and should provide a reasonably complete database for practical application for photoionization cross section for Al X. The resonance energy levels and widths of 18 Rydberg series have been investigated.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


2020 ◽  
Vol 496 (2) ◽  
pp. 1453-1470 ◽  
Author(s):  
Yi-Han Wang ◽  
Rosalba Perna ◽  
Nathan W C Leigh

ABSTRACT The discovery of exoplanetary systems has challenged some of the theories of planet formation, which assume unperturbed evolution of the host star and its planets. However, in star clusters the interactions with fly-by stars and binaries may be relatively common during the lifetime of a planetary system. Here, via high-resolution N-body simulations of star–planet systems perturbed by interlopers (stars and binaries), we explore the reconfiguration to the planetary system due to the encounters. In particular, via an exploration focused on the strong scattering regime, we derive the fraction of encounters that result in planet ejections, planet transfers, and collisions by the interloper star/binary, as a function of the characteristics of the environment (density, velocity dispersion), and for different masses of the fly-by star/binary. We find that binary interlopers can significantly increase the cross-section of planet ejections and collisions, while they only slightly change the cross-section for planet transfers. Therefore, in environments with high binary fractions, floating planets are expected to be relatively common, while in environments with low binary fractions, where the cross-sections of planet ejection and transfer are comparable, the rate of planet exchanges between two stars will be comparable to the rate of production of free-floating planets.


2019 ◽  
Vol 97 (11) ◽  
pp. 1206-1209
Author(s):  
Ezgi Tantoğlu ◽  
Nalan Özkan ◽  
R. Taygun Güray

There are 35 proton-rich isotopes between 74Se and 196Hg that cannot be synthesized through neutron captures and β− decays (s- and r-processes). A third process is therefore required for the production of these nuclei, the so-called p-process. The abundance and the origin of the p-nuclei are still not fully understood even though significant experimental and theoretical efforts in astrophysical modeling have been expended in the last two decades. The experimental studies with the activation method to measure cross sections of the relevant reactions have some limitations: the reaction product must be radioactive, should have an appropriate half-life, and its decay should be followed by proper γ-radiations. If the cross section cannot be calculated with the radiation followed by the first beta decay of the product, it can be measured using the second beta decay as an alternative method. In this study, the method and candidate reactions for the cross-section measurements via the second beta decay of the reaction product using the activation method are discussed.


Sign in / Sign up

Export Citation Format

Share Document