scholarly journals Sweetening Pharmaceutical Radiochemistry by 18F-Fluoroglycosylation: Recent Progress and Future Prospects

Author(s):  
Sandip S. Shinde ◽  
Simone Maschauer ◽  
Olaf Prante

In the field of 18F-chemistry for the development of radiopharmaceuticals for positron emission tomography (PET), various labeling strategies by the use of prosthetic groups have been im-plemented, including chemoselective 18F-labeling of biomolecules. Among those, chemoselec-tive 18F-fluoroglycosylation methods focus on the sweetening of pharmaceutical radiochemistry by offering a highly valuable tool for the synthesis of 18F-glycoconjugates with suitable in vivo properties for PET imaging studies. A previous review covered the various 18F-fluoroglycosylation methods that have been developed and applied as of 2014 [Maschauer and Prante, BioMed. Res. Int. 2014, 214748]. This paper is an updated review, providing the recent progress in 18F-fluoroglycosylation reactions and the preclinical application of 18F-glycoconjugates, including small molecules, peptides, and high-molecular-weight proteins.

2021 ◽  
Vol 14 (11) ◽  
pp. 1175
Author(s):  
Sandip S. Shinde ◽  
Simone Maschauer ◽  
Olaf Prante

In the field of 18F-chemistry for the development of radiopharmaceuticals for positron emission tomography (PET), various labeling strategies by the use of prosthetic groups have been implemented, including chemoselective 18F-labeling of biomolecules. Among those, chemoselective 18F-fluoroglycosylation methods focus on the sweetening of pharmaceutical radiochemistry by offering a highly valuable tool for the synthesis of 18F-glycoconjugates with suitable in vivo properties for PET imaging studies. A previous review covered the various 18F-fluoroglycosylation methods that were developed and applied as of 2014 (Maschauer and Prante, BioMed. Res. Int. 2014, 214748). This paper is an updated review, providing the recent progress in 18F-fluoroglycosylation reactions and the preclinical application of 18F-glycoconjugates, including small molecules, peptides, and high-molecular-weight proteins.


2007 ◽  
Vol 27 (9) ◽  
pp. 1623-1631 ◽  
Author(s):  
Aijun Zhu ◽  
Xukui Wang ◽  
Meixiang Yu ◽  
Ji-Quan Wang ◽  
Anna-Liisa Brownell

Micro-positron emission tomography imaging studies were conducted to characterize modulation of metabotropic glutamate subtype-5 receptor (mGluR5) function in a 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease using four analogical PET ligands: 2-[11C]methyl-6-(2-phenylethynyl) pyridine ([11C]MPEP), 2-(2-(3-[11C]methoxyphenyl)ethynyl)pyridine ([11C]M-MPEP), 2-(2-(5-[11C]methoxypyridin-3-yl)ethynyl)pyridine ([11C]M-PEPy), and 3-[(2-[18F]methyl-1,3-thiazol-4-yl)ethynyl]pyridine ([18F]M-TEP). A total of 45 positron emission tomography (PET) imaging studies were conducted on nine male Sprague-Dawley rats within 4 to 6 weeks after unilateral 6-OHDA lesioning into the right medial forebrain bundle. The severity of the lesion was determined with [11C]CFT ([11C]2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane), a specific and sensitive ligand for imaging dopamine transporter function. The binding potential (BP) images were processed on pixel-by-pixel basis by using a method of the distribution volume ratio with cerebellum as a reference tissue. The values for BP were determined on striatum, hippocampus, and cortex. [11C]CFT binding was decreased on the lesioned (right) striatum by 35.4% ± 13.4% compared with the intact left striatum, indicating corresponding loss of presynaptic dopamine terminals. On the same areas of the lesioned striatum, three of the four tested mGluR5 ligands showed enhanced binding characteristics. The average differences between the right and left striatum were 4.4% ± 6.5% ( P < 0.05) with [11C]MPEP, 0.1% ± 1.7% ( P > 0.05) with [11C]M-MPEP, 3.9% ± 4.6% ( P < 0.05) with [11C]M-PEPy, and 6.6% ± 2.7% ( P > 0.05) with [18F]M-TEP. The enhanced binding was also observed in the right hippocampus and cortex. These studies showed that glutamatergic neurotransmission might have a complementary role in dopaminergic degeneration, which can be evaluated by in vivo PET imaging.


2021 ◽  
Author(s):  
Zachary T Rosenkrans ◽  
Anna S Thickens ◽  
John A Kink ◽  
Eduardo Aluicio-Sarduy ◽  
Jonathan W Engle ◽  
...  

Noninvasive imaging is a powerful tool for understanding the in vivo behavior of drug delivery systems and successfully translating promising platforms into the clinic. Extracellular vesicles (EVs), nano-sized vesicles with a lipid bilayer produced by nearly all cell types, are emerging platforms for drug delivery. To date, the biodistribution of EVs has been insufficiently investigated, particularly using nuclear imaging-based modalities such as positron emission tomography (PET). Herein, we developed positron-emitting radiotracers to investigate the biodistribution of EVs isolated from various human cell sources using PET imaging. Chelator conjugation did not impact EVs size and subsequent radiolabeling was found to be highly efficient and stable with Zr-89 (t1/2 = 78.4 h). In vivo tracking of EVs isolated from bone marrow-derived mesenchymal stromal cells (BMSCs EVs), primary human macrophages (Mϕ EVs), and a melanoma cell line (A375 EVs) were performed in immunocompetent ICR mice. Imaging studies revealed excellent in vivo circulation for all EVs, with a half-life of approximately 12 h. Significantly higher liver uptake was observed for Mϕ EVs, evidencing the tissue tropism of EV and highlighting the importance of carefully choosing EVs cell sources for drug delivery applications. Conversely, the liver, spleen, and lung uptake of the BMSC EVs and A375 EVs was relatively low. We also investigated the impact of immunodeficiency on the biodistribution of BMSC EVs using NSG mice. The spleen uptake drastically increased in NSG mice, which could confound results of therapeutic studies employing this mouse models. Lastly, PET imaging studies in a melanoma tumor model demonstrated efficient tumor uptake of BMSC EVs following intravenous injection. Overall, these imaging studies evidenced the potential of EVs as carriers to treat a variety of diseases, such as cancer or in regenerative medicine applications, and the necessity to understand EVs tropism to optimize their therapeutic deployment.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Carlos Velasco ◽  
Adriana Mota-Cobián ◽  
Jesús Mateo ◽  
Samuel España

Abstract Background Multi-tracer positron emission tomography (PET) imaging can be accomplished by applying multi-tracer compartment modeling. Recently, a method has been proposed in which the arterial input functions (AIFs) of the multi-tracer PET scan are explicitly derived. For that purpose, a gamma spectroscopic analysis is performed on blood samples manually withdrawn from the patient when at least one of the co-injected tracers is based on a non-pure positron emitter. Alternatively, these blood samples required for the spectroscopic analysis may be obtained and analyzed on site by an automated detection device, thus minimizing analysis time and radiation exposure of the operating personnel. In this work, a new automated blood sample detector based on silicon photomultipliers (SiPMs) for single- and multi-tracer PET imaging is presented, characterized, and tested in vitro and in vivo. Results The detector presented in this work stores and analyzes on-the-fly single and coincidence detected events. A sensitivity of 22.6 cps/(kBq/mL) and 1.7 cps/(kBq/mL) was obtained for single and coincidence events respectively. An energy resolution of 35% full-width-half-maximum (FWHM) at 511 keV and a minimum detectable activity of 0.30 ± 0.08 kBq/mL in single mode were obtained. The in vivo AIFs obtained with the detector show an excellent Pearson’s correlation (r = 0.996, p < 0.0001) with the ones obtained from well counter analysis of discrete blood samples. Moreover, in vitro experiments demonstrate the capability of the detector to apply the gamma spectroscopic analysis on a mixture of 68Ga and 18F and separate the individual signal emitted from each one. Conclusions Characterization and in vivo evaluation under realistic experimental conditions showed that the detector proposed in this work offers excellent sensibility and stability. The device also showed to successfully separate individual signals emitted from a mixture of radioisotopes. Therefore, the blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Johannes Notni ◽  
Florian T. Gassert ◽  
Katja Steiger ◽  
Peter Sommer ◽  
Wilko Weichert ◽  
...  

Following publication of the original article [1], the authors have reported an error in the ‘Histopathology’ (under ‘Materials and methods’) section of the article that compromises the reproducibility of the paper.


Sign in / Sign up

Export Citation Format

Share Document