scholarly journals Persamaan Gelombang Gravitasi untuk Teori Proca yang Digeneralisasi

Author(s):  
Marliana Marliana ◽  
Agustina Widiyani ◽  
Azwar Sutiono ◽  
Agus Suroso ◽  
Freddy P. Zen

<p class="AbstractEnglish"><strong>Abstract:</strong> The direct detection of gravitational waves from binary black holes and neutron stars have been taking a new oportunities to test teori of gravity.The gravitational wave is affected by the modification of a gravity theory during propagation at cosmological distances. By comparing general equation of gravtiational wave and modification of gravity theory, is obtained equation of gravitational wave for the generalized Proca theories. As a result, we find equation of gravitational wave for the generalized Proca theory. We conclude that the massive vector field affected propagation of gravitational wave.  we can use the result to test the generalized Proca theory.    </p><p class="AbstrakIndonesia"><strong>Abstrak:</strong> Dengan terdeteksinya gelombang gravitasi secara langsung dari biner lubang hitam dan bintang neutron menjadi kesempatan untuk dapat menguji teori gravitasi yang sedang dikembangkan.Gelombang gravitasi secara umum dipengaruhi oleh modifikasi teori gravitasi selama penjalarannya pada jarak kosmologi. Dengan membandingkan persamaan gelombang gravitasi dengan teori modifikasi yang dikembangkan, diperoleh persamaan umum gelombang gravitasi dari teori gravitasi yang dikembangkan. Pada artikel ini diperoleh persamaan gelombang gravitasi untuk teori Proca yang digeneralisasi. Dapat disimpulkan bahwa fungsi yang mengandung vektor medan masif dapat mempengaruhi gelombang gravitasi. Persamaan ini dapat digunakan untuk menguji teori Proca yang digeneralisasi.</p>

Author(s):  
John W. Moffat

Civita criticized Einstein’s papers on gravitational waves: their energy momentum is frame dependent and therefore does not fit the covariance of Einstein’s gravity theory. Infeld and Rosen did not believe gravitational waves existed, and Einstein changed his mind on their existence repeatedly. Others did believe in them, such as Fock and Feynman. Weber constructed his “Weber bar” to detect gravitational waves, but when he claimed success, he was criticized. He then proposed using a Michelson-Morley type of interferometer with lasers to detect gravitational waves, as did Weiss. Merging black holes and neutron stars were proposed as detectable sources of gravitational waves. Taylor and Hulse, using the large Arecibo radio telescope, indirectly detected gravitational waves from inspiraling neutron stars. Primordial gravitational waves, still emanating from the Big Bang, were claimed to have been detected by BICEP2, but the waves were eventually shown to be a result of foreground dust.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 137
Author(s):  
Andrzej Królak ◽  
Paritosh Verma

In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations.


Author(s):  
B. F. Schutz

Now that LIGO and Virgo have begun to detect gravitational-wave events with regularity, the field of gravitational-wave astronomy is beginning to realize its promise. Binary black holes and, very recently, binary neutron stars have been observed, and we are already learning much from them. The future, with improved sensitivity, more detectors and detectors like LISA in different frequency bands, has even more promise to open a completely hidden side of the Universe to our exploration. This article is part of a discussion meeting issue ‘The promises of gravitational-wave astronomy’.


2009 ◽  
Vol 26 (2) ◽  
pp. 103-109 ◽  
Author(s):  
G. B. Hobbs ◽  
M. Bailes ◽  
N. D. R. Bhat ◽  
S. Burke-Spolaor ◽  
D. J. Champion ◽  
...  

AbstractThe first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing-array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ∼ 10−9–10−8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper, we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.


2019 ◽  
Vol 7 ◽  
Author(s):  
Joey Shapiro Key ◽  
LIGO Scientific Collaboration

On a summer day in 2017, astronomers around the world received a message about an exciting collision of two stars far, far away. The message was sent by a team of astronomers from the LIGO and Virgo observatories. These new observatories are very different from the telescopes we have used to study our Universe up until now. LIGO and Virgo are gravitational wave observatories, listening for quiet ripples in spacetime created by the collisions of distant black holes and neutron stars. On August 17, 2017 LIGO and Virgo detected a signal that astronomers named GW170817, from the collision of two neutron stars. Less than two seconds later, NASA's Fermi satellite caught a signal, known as a gamma-ray burst, and within minutes, telescopes around the world began searching the sky. Telescopes in South America found the location of the collision in a distant galaxy known as NGC 4993. For the weeks and months that followed, astronomers watched the galaxy and the fading light from the collision. This is a new kind of multi-messenger astronomy where, for the first time, the same event was observed by both gravitational waves and light.


Author(s):  
Rabinarayan Swain ◽  
Priyasmita Panda ◽  
Hena Priti Lima ◽  
Bijayalaxmi Kuanar ◽  
Biswajit Dalai

Detection of Gravitational waves opened a new path for cosmological study in a new approach. From the detection of gravitational waves signal by advanced LIGO, its research climbed the peak. After the collaboration of LIGO and Virgo, several observations get collected from different sources of binary systems like black holes, binary neutron stars even both binary black hole and neutron star. The rigorous detection of gravitational signals may provide an additional thrust in the study of complex binary systems, dark matter, dark energy, Hubble constant, etc. In this review paper, we went through multiple research manuscripts to analyze gravitational wave signals. Here we have reviewed the history and current situation of gravitational waves detection, and we explained the concept and process of detection. Also, we go through different parts of a detector and their working. Then multiple gravitational wave signals are focused, originated from various sources and then found correlation between them. From this, the contribution of gravitational waves in different fields like complex binary systems (black holes, neutron stars), dark matter, dark energy and Hubble Constant have been discussed in this manuscript.


Author(s):  
John W. Moffat

The author visits one of the two Laser Interferometer Gravitational- Wave Observatory (LIGO) sites in the United States, at Hanford, Washington. This is where scientists are detecting gravitational waves generated by faraway merging black holes and neutron stars. He meets the people who work there and has discussions with some of them. The director gives him a tour of the LIGO experimental installation, describing the work, the technological details of the apparatus, and answers his questions. On the final day of the visit, the author gives a talk to the LIGO group on gravitational waves and on an alternative gravitational theory.


Sign in / Sign up

Export Citation Format

Share Document