Using a Four-Dimensional Mesh Model to Represent a Tool Motion Trajectory in Five-Axis Machining

2014 ◽  
Vol 8 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Hirotaka Kameyama ◽  
◽  
Ikuru Otomo ◽  
Masahiko Onosato ◽  
Fumiki Tanaka ◽  
...  

In the field of machining processes, three-Dimensional (3D) models are commonly used to simulate the motions of cutting tools and workpieces. However, it is difficult for 3D models to represent spatio-temporal changes in their shapes continuously and to a high degree of accuracy. The objective of this study is to represent the 5-axis cutting process of workpiece transformation explicitly using a spatio-temporal model, the “four-Dimensional (4D) mesh model.” Every 4D mesh model is defined with bounding tetrahedral cells, and can continuously represent spatio-temporal changes of shape, position and orientation. In this study, the five-axis cutting process is described using accumulated volumes of 4D mesh models. Accumulated volumes are total volumes determined by spaces through which the object has passed. The use of accumulated volumes enables us to record tool-swept volumes and material removal shapes. First, this report introduces a 4D mesh model and the development of a 4D mesh modeling system. Next, a method of representing accumulated volumes as 4D mesh models is proposed. Generated 4D models are observed as 3D models by means of cross-section extraction.

2014 ◽  
Vol 2 (2) ◽  
Author(s):  
Diego Alejandro Neira Moreno

El estudio de las variables y efectos derivados del mecanizado provee herramientas de conocimiento tendientes a optimizar el uso de las herramientas y los procedimientos de maquinado industrial. Este artículo de reflexión aborda el uso de los dispositivos de interrupción súbita (DIS) como herramientas de obtención de raíces de viruta para la investigación científica del mecanizado industrial, y para el estudio de los efectos derivados de la interacción entre las herramientas de corte y el material de trabajo, en función de los cambios microestructurales del material de trabajo, dependientes de la temperatura producida y los esfuerzos mecánicos de la herramienta de corte durante el mecanizado. Mediante la reflexión se destaca la importancia de los DIS como instrumentos de investigación científica en la manufactura, ya que estos permiten obtener muestras de viruta para estudiar las variables incidentes en el maquinado y a partir de esta evidencia, proponer alternativas para optimizar la fabricación de piezas y la integridad de las herramientas empleadas en el proceso.AbstractThe study of the variables and effects derived from the machining processes brings the knowledge needed to optimize the use of machining tools and procedures. This article is an opinion piece about the use of quick stop devices (QSD) as a scientific research instrument in machining projects to obtain chip roots, to study the interaction phenomena between cutting tool and work piece material that depends on temperature and the mechanical forces produced by the cutting tool during the cutting process. This article deals about how important the QSD are as a research instruments in manufacture because with this instruments it is possible to analyze the machining variables, based on the evidences bring by the chip roots obtained with the instrument. It is possible to propose optimization alternatives in the manufacture of machined parts and the integrity of cutting tools.


Author(s):  
N Fang

Traditionally, cutting tools made of sintered carbides or high-speed steels are used to cut a variety of metal materials in the experimental study on chip control. One of the existing problems is that, in most cases, it is difficult to make, in a laboratory, cutting tools with a three-dimensionally shaped chip breaking groove for use in the follow-up experiments. Turning to tool manufacturers, who use the powder metallurgy techniques of tool making for help, usually leads to a long experimental period and high cost. An auxiliary approach to the experimental study on chip control, called a kinematically simulated test (KST), is proposed in this present work to overcome the above shortcoming of the traditional method employed in the experimental study on chip control. A plexiglass-made cutting tool is employed to cut a commercially available paraffin wax to simulate some kinematic phenomena (such as chip flow and chip curl) which take place during practical machining processes. After the applied range of KST has been illustrated, two examples of applying KST are given. One is the application of KST to chip flow research. The other is optimizing the geometry of the chip breaking groove of a tool insert by means of KST. Both examples involve the making of the chip breaking grooves with the three-dimensional shape and geometry.


2021 ◽  
Vol 906 (1) ◽  
pp. 012030
Author(s):  
Bingbing Song ◽  
Yanlin Wang ◽  
Fang Li

Abstract Map is a traditional visualization tool to represent distribution and interaction of spatial objects or spatial phenomenon. However, with the continuous development of acquisition and processing technologies for spatio-temporal data, traditional map can hardly meet the visualization requirement for this type of data. In other words, the dynamic information about spatial object or phenomenon cannot be expressed fully by traditional map. The Space-Time-Cube (STC), as a three-dimensional visualization environment, whose base represents the two-dimensional geographical space and whose height represents the temporal dimension, can simultaneously represent the spatial distribution as well as the temporal changes of spatio-temporal data. For some spatial object or phenomenon, its moving trajectory can be visualized in STC as a Space-Time-Path (STP), by which the speed and state of motion can be clearly reflected. Noticeably, the problem of visual clutter about STP is inevitably due to the complexity of three-dimensional visualization. In order to reduce the impact of visual clutter, this paper discusses different aspects about visualization representation of STP in the STC. The multiple scales representation and the multiple views display can promote interactive experience of users, and the application of different visual variables can help to represent different kinds of attribute information of STP. With the visualization of STP, spatio-temporal changes and attributive characters of spatial object or phenomenon can be represented and analysed.


Author(s):  
Zhen Li

Application of 3D mesh model coding is first presented in this chapter. We then survey the typical existing algorithms in the area of compression of static and dynamic 3D meshes. In an introductory sub-section we introduce basic concepts of 3D mesh models, including data representations, model formats, data acquisitions and 3D display technologies. Furthermore, we introduce several typical 3D mesh formats and give an overview to coding principles of mesh compression algorithms in general, followed by describing the quantitative measures for 3D mesh compression. Then we describe some typical and state-of-the-art algorithms in 3D mesh compression. Compression and streaming of gigantic 3D models are specially introduced. At last, the MPEG4 3D mesh model coding standard is briefed. We conclude this chapter with a discussion providing an overall picture of developments in the mesh coding area and pointing out directions for future research.


2021 ◽  
Vol 13 (19) ◽  
pp. 3801
Author(s):  
Yunsheng Zhang ◽  
Chi Zhang ◽  
Siyang Chen ◽  
Xueye Chen

Three-dimensional (3D) building façade model reconstruction is of great significance in urban applications and real-world visualization. This paper presents a newly developed method for automatically generating a 3D regular building façade model from the photogrammetric mesh model. To this end, the contour is tracked on irregular triangulation, and then the local contour tree method based on the topological relationship is employed to represent the topological structure of the photogrammetric mesh model. Subsequently, the segmented contour groups are found by analyzing the topological relationship of the contours, and the original mesh model is divided into various components from bottom to top through the iteration process. After that, each component is iteratively and robustly abstracted into cuboids. Finally, the parameters of each cuboid are adjusted to be close to the original mesh model, and a lightweight polygonal mesh model is taken from the adjusted cuboid. Typical buildings and a whole scene of photogrammetric mesh models are exploited to assess the proposed method quantitatively and qualitatively. The obtained results reveal that the proposed method can derive a regular façade model from a photogrammetric mesh model with a certain accuracy.


Author(s):  
Mamoru Nishiyama ◽  
Ryuta Sato ◽  
Keiichi Shirase

In virtual machining simulation to verify NC programs for machining operation, construction of 3D (three-dimensional) models of cutting tools to be used and identification of posture and position of workpiece to be machined are quite important to achieve reliable verification. Especially, a 3D model construction of cutting tools requires skill-full operations and it takes much time and cost. Several geometric parameters to define cutting tool shapes are needed to construct precise 3D models for virtual machining simulation. Even though, careless mistake to set parameters of tool diameter and length causes machining troubles. Therefore, no trouble was happened in virtual machining simulation, it is still required to check machining troubles through the trial-cutting on actual NC machine tools. In this paper, new methods to construct 3D models of cutting tools and identification of posture and position of workpiece are proposed. Experimental measurement of cutting tool shape is performed on the machine tool using a CCD camera, and a 3D model of cutting tool was constructed successfully. By this method, setting of invalid parameters to define cutting tool shapes can be avoided. Also, posture and position of the workpiece can be identified successfully. These parameters can be used to detect wrong setup operation before actual machining operation.


2014 ◽  
Vol 1 (2) ◽  
pp. 96-102 ◽  
Author(s):  
Ikuru Otomo ◽  
Masahiko Onosato ◽  
Fumiki Tanaka

Abstract In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahe-dralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 430
Author(s):  
Edgar Figueiras ◽  
David N. Olivieri ◽  
Angel Paredes ◽  
Humberto Michinel

Numerical simulation experiments are of great importance for research and education in Physics. They can be greatly aided by proper graphical representations, especially for spatio-temporal dynamics. In this contribution, we describe and provide a novel Javascript-based library and cloud microservice—QMwebJS—for the visualization of the temporal evolution of three-dimensional distributions. It is an easy to use, web-based library for creating, editing, and exporting 3D models based on the particle sampling method. Accessible from any standard browser, it does not require downloads or installations. Users can directly share their work with other students, teachers or researchers by keeping their models in the cloud and allowing for interactive viewing of the spatio-temporal solutions. This software tool was developed to support quantum mechanics teaching at an undergraduate level by plotting the spatial probability density distribution given by the wavefunction, but it can be useful in different contexts including the study of nonlinear waves.


2020 ◽  
Vol 12 (17) ◽  
pp. 2676 ◽  
Author(s):  
Atsuko Fukunaga ◽  
John H. R. Burns

Underwater photogrammetry has been increasingly used in coral-reef research in recent years. Habitat metrics extracted from resulting three-dimensional (3D) reconstructions can be used to examine associations between the structural complexity of the reef habitats and the distribution of reef organisms. We created simulated 3D models of bare surface structures and 3D reconstructions of coral morphologies to investigate the behavior of various habitat metrics that were extracted from both Digital Elevation Models (DEMs) and 3D mesh models. Analyzing the resulting values provided us with important insights into how these metrics would compare with one another in the characterization of coral-reef habitats. Surface complexity (i.e., reef rugosity), fractal dimension extracted from DEMs and vector dispersion obtained from 3D mesh models exhibited consistent patterns in the ranking of structural complexity among the simulated bare surfaces and coral morphologies. The vector ruggedness measure obtained from DEMs at three different resolutions of 1, 2, and 4 cm effectively captured differences in the structural complexity among different coral morphologies. Profile curvature and planform curvature, on the other hand, were better suited to capture the structural complexity derived from surface topography such as walls and overhanging ledges. Our results indicate that habitat metrics extracted from DEMs are generally suitable when characterizing a relatively large plot of a coral reef captured from an overhead planar angle, while the 3D metric of vector dispersion is suitable when characterizing a coral colony or a relatively small plot methodically captured from various angles.


2014 ◽  
Vol 971-973 ◽  
pp. 1912-1915
Author(s):  
Jun Liu ◽  
Zhi Zhen Chen ◽  
Yu Sun ◽  
Yan Liu ◽  
Zhen Long Liao ◽  
...  

With the increasing data amount of 3D models of view-dependent progressive mesh in recent years, it is more and more difficult for the efficiency of the traditional serial vertex processing algorithm to meet the current demand for the rendering time for models. Therefore, this paper proposes a parallel vertex processing framework based on the half-edge structure view-dependent progressive mesh, enabling users to obtain not only the dynamics of three-dimensional progressive mesh models but also the improving rendering efficiency.


Sign in / Sign up

Export Citation Format

Share Document