Protease-activated receptor 1 (PAR1): a promising target for the treatment of glioblastoma?

2016 ◽  
Vol 5 (S6) ◽  
pp. S1274-S1280 ◽  
Author(s):  
Vitor Hugo de Almeida ◽  
Robson Q. Monteiro
2017 ◽  
Vol 117 (11) ◽  
pp. 2013-2025 ◽  
Author(s):  
Anke Fender ◽  
Bernhard Rauch ◽  
Tobias Geisler ◽  
Karsten Schrör

AbstractThrombin triggers activation of platelets through protease-activated receptor 1 (PAR-1) and PAR-4. Both receptors are widely expressed and exert multiple platelet-independent functions. PAR signalling contributes to healing responses after injury, by promoting cytokine activity and cellular growth and mobility. Uncontrolled PAR activation, however, can prevent timely resolution of inflammation, enhance thrombogenic endothelial function and drive adverse remodelling. The specific role of PAR-4 in thromboinflammatory vascular disease has been largely underestimated, given the relatively limited expression of PAR-4 in non-platelet cells under healthy conditions. However, unlike PAR-1, PAR-4 expression adapts dynamically to numerous stimuli associated with thromboinflammation, including thrombin, angiotensin II, sphingosine-1-phosphate (S1P), high glucose and redox stress, suggesting expression is switched on ‘at need’. Prostacyclin negatively regulates PAR-4 expression at the post-transcriptional level, which may serve to fine-tune thrombin responses and limit these to the injury site. PAR-4 elicits inflammatory, mitogenic and proliferative actions not only in response to thrombin but also to numerous other inflammatory proteases, and can cross-talk with other receptor systems such as S1P and adenosine receptors. Accordingly, PAR-4 has emerged as a candidate player in vessel disease and cardiac post-infarction remodelling. Currently, PAR-4 is a particularly promising target for safer anti-thrombotic therapies. Recent studies with the PAR-4 antagonist BMS-986120 lend support to the concept that selective antagonism of PAR-4 may offer both an effective and safe anti-thrombotic therapy in the acute thrombotic setting as well as an anti-inflammatory strategy to prevent long-term progressive atherosclerotic disease in high-risk cardiovascular patients.


2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


2020 ◽  
Author(s):  
Eswari Dodagatta-Marri ◽  
Hsiao-Yen Ma ◽  
Benjia Liang ◽  
John Li ◽  
Dominique S. Meyer ◽  
...  

2019 ◽  
Vol 35 (6) ◽  
pp. 39-50
Author(s):  
T.V. Yuzbashev ◽  
A.S. Fedorov ◽  
F.V. Bondarenko ◽  
A.S. Savchenko ◽  
T.V. Vybornaya ◽  
...  

The present work describes an approach that improves the properties of the strain producing L-threonine via the reduction in the biomass accumulation during fermentation. Glutamyl- and glutaminyl-tRNA synthetases were chosen as targets. Mutants carrying temperature-sensitive alleles were obtained. It was shown that the used system caused the suppression of the function of tRNA synthetases which led to a rapid arrest of the culture growth, and an increase in productivity and yield of the L-threonine synthesis. One of the temperature-sensitive strains was used to obtain under non-permissive conditions of mutants with the suppressed above phenotype. Some of these mutants accumulate less biomass and produce by 10-12% more threonine than the original strain. Escherichia coli, producing strain, threonine, aminoacyl-tRNA synthetase, ts-mutation This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project code RFMEFI61017X0011), and it was carried out using the equipment of the National Bio-Resource Center All-Russian Collection of Industrial Microorganisms, NRC «Kurchatov Institute» - GosNIIgenetika.


Sign in / Sign up

Export Citation Format

Share Document