scholarly journals Long-Term Durability of Cold Weather Concrete : Phase II

2021 ◽  
Author(s):  
Benjamin E. Watts ◽  
Danielle E. Kennedy ◽  
Ethan W. Thomas ◽  
Andrew P. Bernier ◽  
Jared I. Oren

Recent laboratory results confirm that it is possible to protect concrete from freezing solely using chemical admixtures and indicate that the amount of admixture required may be significantly less than previously recommended. Researchers have also verified that admixture-based freeze protection can produce concrete that is durable to winter exposure for a minimum of 20 years, through petrographic examination of core specimens obtained from past field demonstrations. Freeze protection for concrete using chemical admixtures alone has been an area of active research for 3 decades; however, the most recent methodology recommends very high addition rates of accelerating and corrosion inhibiting admixtures, which result in significant challenges, including slump loss, rapid setting, and potentially excessive temperature rise. As part of a laboratory study, researchers systematically varied the dosage of freeze protection admixtures used in concrete cured in a 23 °F environment. Preliminary findings indicate that a 50% reduction in admixture dose maintained adequate freeze protection and resulted in compressive strengths exceeding those of room-temperature controls at 7 and 28 days. The combination of improved handling, reduced cost, and verified durability associated with the use of admixtures for freeze protection makes a compelling case for broader adoption of this technique in winter operations

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Frederick S. Schollenberger ◽  
Frank Kreith ◽  
Jay Burch

Passive integral collector storage (ICS) solar water heaters can potentially heat water at lower costs then active systems with freeze protection. However, ICS panels can freeze in cold weather. This study developed a model relating the freeze behavior to climate conditions, validated the model experimentally and then ran the model with long term U.S. weather data to delineate regions safe for the passive solar heaters. Both, a single- and a double-glazed tubular ICS panels were modeled and tested. It was found that freezing begins when the water in the supply/return lines freezes and initiates a pressure build up in the collector which can eventually burst the large collector tubes when the water inside freezes and expands. It was found that freezing can be delayed by installing heat tape over the supply/return lines. Using a model of the collector and TMY2 weather data, correlation maps were developed to show in which regions of the U.S. ICS panels with and without heat tapes can be installed safely.


2021 ◽  
Vol 14 (1) ◽  
pp. 9-16
Author(s):  
Mario P. Wehrle ◽  
Thomas Küpper ◽  
Claus-M. Muth

Aim of the study: The purpose of this work is to show the possibility to use a recuperative design of a heat and moisture exchange face mask (HME). Such HME are used as cold weather face masks for Arctic expeditions and conditioning of air for long-term intubated patients. Common regenerative HME have the disadvantage of increasing airway resistance and airway volume (dead space). In recuperative devices, the separation of inspired and expired airflow could reduce dead space and resistance. Materials and methods: Prototype HMEs were built using two concentric ducts of aluminium or cotton. A valve ensures that expired and inspired air are led through either the inner or the outer tube. The inner tube’s wall transmits heat and water. The HMEs were tested in a simulated Arctic environment using a breathing simulator and characterized in terms of heat and moisture exchange efficiency. The new design was also tested at room temperature in order to simulate the conditions of long-term intubation. To compare the results, the relative difference in temperature (Performance Coefficient PC) between the expired and the inspired air was calculated. Results: During the experiments, the ambient temperature was −37°C and therefore the absolute water content was about zero. The recuperative HME conditioned the air to 21°C and 10.7 mg/l water (61% relative humidity), giving a PC of 82%. At room temperature the recuperative mask showed a PC of 62%. Conclusion: The recuperative HME shows great potential. It might be of use in clinical conditions and Arctic expeditions.


Author(s):  
N.J. Long ◽  
M.H. Loretto ◽  
C.H. Lloyd

IntroductionThere have been several t.e.m. studies (1,2,3,4) of the dislocation arrangements in the matrix and around the particles in dispersion strengthened single crystals deformed in single slip. Good agreement has been obtained in general between the observed structures and the various theories for the flow stress and work hardening of this class of alloy. There has been though some difficulty in obtaining an accurate picture of these arrangements in the case when the obstacles are large (of the order of several 1000's Å). This is due to both the physical loss of dislocations from the thin foil in its preparation and to rearrangement of the structure on unloading and standing at room temperature under the influence of the very high localised stresses in the vicinity of the particles (2,3).This contribution presents part of a study of the Cu-Cr-SiO2 system where age hardening from the Cu-Cr and dispersion strengthening from Cu-Sio2 is combined.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


Author(s):  
Ekaterina Shchurova ◽  
Ekaterina Shchurova ◽  
Rimma Stanichnaya ◽  
Rimma Stanichnaya ◽  
Sergey Stanichny ◽  
...  

Sivash bay is the shallow-water lagoon of the Azov Sea. Restricted water exchange and high evaporation form Sivash as the basin with very high salinity. This factor leads to different from the Azov Sea thermal and ice regimes of Sivash. Maine aim of the study presented to investigate recent state and changes of the characteristics and processes in the basin using satellite data. Landsat scanners TM, ETM+, OLI, TIRS together with MODIS and AVHRR were used. Additionally NOMADS NOAA and MERRA meteorological data were analyzed. The next topics are discussed in the work: 1. Changes of the sea surface temperature, ice regime and relation with salinity. 2. Coastal line transformation – long term and seasonal, wind impact. 3. Manifestation of the Azov waters intrusions through the Arabat spit, preferable wind conditions.


Author(s):  
Michael A. Cohn ◽  
Barbara L. Fredrickson

Positive emotions include pleasant or desirable situational responses, ranging from interest and contentment to love and joy, but are distinct from pleasurable sensation and undifferentiated positive affect. These emotions are markers of people's overall well-being or happiness, but they also enhance future growth and success. This has been demonstrated in work, school, relationships, mental and physical health, and longevity. The broaden-and-build theory of positive emotions suggests that all positive emotions lead to broadened repertoires of thoughts and actions and that broadening helps build resources that contribute to future success. Unlike negative emotions, which are adapted to provide a rapid response to a focal threat, positive emotions occur in safe or controllable situations and lead more diffusely to seeking new resources or consolidating gains. These resources outlast the temporary emotional state and contribute to later success and survival. This chapter discusses the nature of positive emotions both as evolutionary adaptations to build resources and as appraisals of a situation as desirable or rich in resources. We discuss the methodological challenges of evoking positive emotions for study both in the lab and in the field and issues in observing both short-term (“broaden”) and long-term (“build”) effects. We then review the evidence that positive emotions broaden perception, attention, motivation, reasoning, and social cognition and ways in which these may be linked to positive emotions' effects on important life outcomes. We also discuss and contextualize evidence that positive emotions may be detrimental at very high levels or in certain situations. We close by discussing ways in which positive emotions theory can be harnessed by both basic and applied positive psychology research.


Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 28-34
Author(s):  
Mahmoud Samadpour ◽  
Mahsa Heydari ◽  
Mahdi Mohammadi ◽  
Parisa Parand ◽  
Nima Taghavinia

Brachytherapy ◽  
2012 ◽  
Vol 11 (4) ◽  
pp. 250-255 ◽  
Author(s):  
Nathan Bittner ◽  
Gregory S. Merrick ◽  
Wayne M. Butler ◽  
Robert W. Galbreath ◽  
Jonathan Lief ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document