Influence of Temperature and Pressure on Asphaltene Flocculation

1984 ◽  
Vol 24 (03) ◽  
pp. 283-293 ◽  
Author(s):  
A. Hirschberg ◽  
L.N.J. deJong ◽  
B.A. Schipper ◽  
J.G. Meijer

Abstract A thermodynamic liquid model has been developed to describe the behavior of asphalt and asphaltenes in reservoir crudes upon changes in pressure, temperature, or composition. Asphaltene solubility properties used as input to the model may be obtained from titration experiments on tank oil. High-pressure flocculation experiments confirm the potential of the model. The model appears to be well applicable to conditions at which asphaltenes are associated with resins. The model may be used to identify field conditions where asphalt or asphaltene precipitation will occur. Introduction Scope of study. Miscible flooding with enriched gas or CO has the potential of recovering a significantly larger volume of oil more economically than conventional water flooding. One of the problems in gas drives is asphaltene instability, which might result in plugging or wettability reversal. Asphalt or asphaltenes precipitation may also affect production in the course of precipitation may also affect production in the course of reservoir development by natural depletion. The parameters that govern precipitation appear to be composition of the crude, pressure, temperature, and properties of asphaltenes. For a specific project one can properties of asphaltenes. For a specific project one can investigate the flocculation process experimentally. This proposition is usually impractical because it requires a proposition is usually impractical because it requires a large number of experiments at reservoir conditions of pressure and temperature. Hence, there is a need for a pressure and temperature. Hence, there is a need for a theoretical description using only a limited amount of experimental data to predict precipitation. The search for such a model has been hampered by the widely held notion that asphaltene precipitation is not a (fully) reversible process. Re-examination of experimental information indicates that reversibility of asphaltene precipitation should be considered an open question. If reversible, the process can be described with a thermodynamic model. The aim of the present paper is to demonstrate that flocculation of asphalt and asphaltenes in light crudes (formation of a bituminous phase) can be described with a simple molecular thermodynamic model. The key concepts of asphalt, asphaltenes, and resins are defined in the next section. The model proposed is described in the following section, in which we also review previous studies. We then discuss field experiences. Experimental data are presented on the phase behavior of two light crudes: an Iranian crude oil with an n-heptane asphaltene content of 1.9 wt% (of tank oil) and a North Sea crude with a low (0.3 wt%) asphaltene content (see PVT properties in Tables 1 and 2). We first use the proposed model (Appendix A) to determine the solubility properties of asphaltenes in Crude No. 1, from a series of titration experiments on tank oil. Using, these results, we compare the measured and predicted amounts of asphaltenes precipitated on mixing recombined Crude No. 1 with three potential injection gases (Table 3). We discuss the pressure dependence of asphalt precipitation and compare measured and predicted pressure dependence of the amount of asphalt precipitated from a mixture of crude No. 2 and propane. Possible improvements of the model are also discussed. Finally, the model is used to predict field conditions favorable to asphalt and asphaltene precipitation. Asphaltenes, Resins, and Asphalt. Asphaltenes are defined as the n-heptane insoluble fraction of crude oil obtained following the Inst. of Petroleum (IP) Method Test 143. Resins can be defined as the fraction of crude oil not soluble in ethylacetate but soluble in n-heptane, toluene, and benzene at room temperature. Asphalt is used here as a general term to designate the combination of asphaltenes and resins. Asphalt precipitated by propane can be molten. n-heptane asphaltenes are solid and decompose upon heating. Asphaltenes and resins are heterocompounds and form the most polar fraction of crude oil. Recent studies on asphaltene structure show that the basic asphaltene "molecule" (asphaltene sheet ) has a molecular weight of the same order of magnitude as that of resins (5 × 10 to 10 3 ). Depending on "purity" and concentration asphaltenes form aggregates with a molecular weight of the order of magnitude of 10 to 10 (asphaltene particles ). Resins have a strong tendency to associate with particles ). Resins have a strong tendency to associate with asphaltenes. This reduces the aggregation of asphaltenes, which determines to a large extent their solubility in crude oil. The most common model for asphaltene/resin interaction is the colloidal model. Asphaltene micelles (aggregates) are assumed to be kept in solution (stabilized or peptized) by a layer of resins ("onion-skin model"). peptized) by a layer of resins ("onion-skin model"). However, the studies of Yen, Speight, and Briant provide a basis for developing a molecular model for provide a basis for developing a molecular model for asphaltene/resin interaction. SPEJ P. 283

SPE Journal ◽  
2018 ◽  
Vol 23 (03) ◽  
pp. 952-968 ◽  
Author(s):  
S.. Sugiyama ◽  
Y.. Liang ◽  
S.. Murata ◽  
T.. Matsuoka ◽  
M.. Morimoto ◽  
...  

Summary Digital oil, a realistic molecular model of crude oil for a target reservoir, opens a new door to understand properties of crude oil under a wide range of thermodynamic conditions. In this study, we constructed a digital oil to model a light crude oil using analytical experiments after separating the light crude oil into gas, light and heavy fractions, and asphaltenes. The gas and light fractions were analyzed by gas chromatography (GC), and 105 kinds of molecules, including normal alkanes, isoalkanes, naphthenes, alkylbenzenes, and polyaromatics (with a maximum of three aromatic rings), were directly identified. The heavy fraction and asphaltenes were analyzed by elemental analysis, molecular-weight (MW) measurement with gel-permeation chromatography (GPC), and hydrogen and carbon nuclear-magnetic-resonance (NMR) spectroscopy, and represented by the quantitative molecular-representation method, which provides a mixture model imitating distributions of the crude-oil sample. Because of the low weight concentration of asphaltenes in the light crude oil (approximately 0.1 wt%), the digital oil model was constructed by mixing the gas, light-, and heavy-fraction models. To confirm the validity of the digital oil, density and viscosity were calculated over a wide range of pressures at the reservoir temperature by molecular-dynamics (MD) simulations. Because only experimental data for the liquid phase were available, we predicted the liquid components of the digital oil at pressures lower than 16.3 MPa (i.e., the bubblepoint pressure) by flash calculation, and calculated the liquid density by MD simulation. The calculated densities coincided with the experimental values at all pressures in the range from 0.1 to 29.5 MPa. We calculated the viscosity of the liquid phase at the same pressures by two independent methods. The calculated viscosities were in good agreement with each other. Moreover, the viscosity change with pressure was consistent with the experimental data. As a step for application of digital oil to predict asphaltene-precipitation risk, we calculated dimerization free energy of asphaltenes (which we regarded as asphaltene self-association energy) in the digital oil at the reservoir condition, using MD simulation with the umbrella sampling method. The calculated value is consistent with reported values used in phase-equilibrium calculation. Digital oil is a powerful tool to help us understand mechanisms of molecular-scale phenomena in oil reservoirs and solve problems in the upstream and downstream petroleum industry.


2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


Author(s):  
Pavan Prakash Duvvuri ◽  
Rajesh Kumar Shrivastava ◽  
Sheshadri Sreedhara

Stringent emission legislations and growing health concerns have contributed to the evolution of soot modeling in diesel engines from simple empirical relations to methods involving detailed kinetics and complex aerosol dynamics. In this paper, four different soot models have been evaluated for the high temperature, high pressure combusting dodecane spray cases of engine combustion network (ECN) spray A which mimics engine-relevant conditions. The soot models considered include an empirical, a multistep, a method of moments based, and a discrete sectional method soot model. Two experimental cases with ambient oxygen volume of 21% and 15% have been modeled. A good agreement between simulations and experiments for vapor penetration and heat release rate has been obtained. Quasi-steady soot volume fraction contours for the four soot models have been compared with experiments. Contours of the species and source terms involved in soot modeling have also been compared for a better understanding of soot processes. The empirical soot model results in higher magnitude and spread of soot due to a lack of modeling framework for oxidation through OH species. Among the four models studied, the multistep soot model has been observed to provide the most promising agreement with the experimental data in terms of distribution of soot and location of peak soot volume fraction. Due to a two-way coupling of soot models, the detailed models predict an upstream location for soot as compared to the multi-step soot model which is one way coupled. A significant difference (of an order of magnitude) in the concentration of PAH (polycyclic aromatic hydrocarbons) precursor between multistep and detailed soot models has been observed because of precursor consumption due to the coupling of detailed soot models with chemical kinetics. It is recommended that kinetic schemes, especially those concerning PAH, be validated with experimental data with a kinetics-coupled soot model.


1989 ◽  
Vol 256 (3) ◽  
pp. H921-H924 ◽  
Author(s):  
A. S. Popel ◽  
R. N. Pittman ◽  
M. L. Ellsworth

The experimental data on oxygen flux from arterioles in the hamster cheek pouch retractor muscle [L. Kuo and R. N. Pittman, Am. J. Physiol. 254 (Heart Circ. Physiol. 23): H331-H339, 1988] were analyzed under the assumption that the permeability to oxygen is the same in both perfused and unperfused tissue; permeability is defined as the product of the diffusion and solubility coefficients. However, our analysis indicated that the observed oxygen flux was inconsistent with this assumption and that permeability to oxygen of a blood-perfused tissue may be an order of magnitude higher than previously assumed.


SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 921-930 ◽  
Author(s):  
Antonin Chapoy ◽  
Rod Burgass ◽  
Bahman Tohidi ◽  
J. Michael Austell ◽  
Charles Eickhoff

Summary Carbon dioxide (CO2) produced by carbon-capture processes is generally not pure and can contain impurities such as N2, H2, CO, H2 S, and water. The presence of these impurities could lead to challenging flow-assurance issues. The presence of water may result in ice or gas-hydrate formation and cause blockage. Reducing the water content is commonly required to reduce the potential for corrosion, but, for an offshore pipeline system, it is also used as a means of preventing gas-hydrate problems; however, there is little information on the dehydration requirements. Furthermore, the gaseous CO2-rich stream is generally compressed to be transported as liquid or dense-phase in order to avoid two-phase flow and increase in the density of the system. The presence of impurities will also change the system's bubblepoint pressure, hence affecting the compression requirement. The aim of this study is to evaluate the risk of hydrate formation in a CO2-rich stream and to study the phase behavior of CO2 in the presence of common impurities. An experimental methodology was developed for measuring water content in a CO2-rich phase in equilibrium with hydrates. The water content in equilibrium with hydrates at simulated pipeline conditions (e.g., 4°C and up to 190 bar) as well as after simulated choke conditions (e.g., at -2°C and approximately 50 bar) was measured for pure CO2 and a mixture of 2 mol% H2 and 98 mol% CO2. Bubblepoint measurements were also taken for this binary mixture for temperatures ranging from -20 to 25°C. A thermodynamic approach was employed to model the phase equilibria. The experimental data available in the literature on gas solubility in water in binary systems were used in tuning the binary interaction parameters (BIPs). The thermodynamic model was used to predict the phase behavior and the hydrate-dissociation conditions of various CO2-rich streams in the presence of free water and various levels of dehydration (250 and 500 ppm). The results are in good agreement with the available experimental data. The developed experimental methodology and thermodynamic model could provide the necessary data in determining the required dehydration level for CO2-rich systems, as well as minimum pipeline pressure required to avoid two-phase flow, hydrates, and water condensation.


2021 ◽  
Author(s):  
Mikhail M Krasnov ◽  
Natalia D Novikova ◽  
Roger Cattaneo ◽  
Alexey A Kalenyuk ◽  
Vladimir M Krasnov

Impedance matching and heat management are important factors influencing performance of THz sources. In this work we analyze thermal and radiative properties of such devices based on mesa structures of a layered high-temperature superconductor Bi2Sr2CaCu2O8+δ. Two types of devices are considered, containing either a conventional large single crystal, or a whisker. We perform numerical simulations for various geometrical configurations and parameters and make a comparison with experimental data for the two types of devices. It is demonstrated that the structure and the geometry of both the superconductor and the electrodes are playing important roles. In crystal-based devices an overlap between the crystal and the electrode leads to appearance of a large parasitic capacitance, which shunts THz emission and prevents impedance matching with open space. The overlap is avoided in whisker-based devices. Furthermore, the whisker and the electrodes form a turnstile (crossed-dipole) antenna facilitating good impedance matching. This leads to more than an order of magnitude enhancement of the radiation power efficiency in whisker-based, compared to crystal-based devices. These results are in good agreement with presented experimental data.


Author(s):  
Etini Etefia ◽  
L. O. Odokuma

Heavy crude oil spillage on soil threatens productivity and affects the natural biota of the ecosystem. Evaporation is an important parameter increases crude oil density, viscosity and fraction of lower molecular weight substances which reduce its infiltration into the soil and groundwater. The evaporation of heavy crude oil showed API of 21.5, viscosity of 15mm2/s, density 0.8952 g/cm3, pour point of 11.37. The crude oil was exposed to solar radiation for 35 days. The percentage reduction in mass of the crude oil and temperature on five day interval showed 8.22(38OC) on day 0, on day 5 was 8.13(34oC), on day 10 was 5.92(39oC), on day 15 was 5.38(39oC), on day 20 was 3.16(37oC), on day 25 was 2.94(31oC), on day 20 was 2.56 (41oC) and on day 35 was 1.79(38oC). The lighter molecules evaporated first leaving the heavier molecules behind causing a reduction in the rate of evaporation with time. This analysis will be provide insight to modelling oil spill in terrestrial ecosystem.


Sign in / Sign up

Export Citation Format

Share Document