Model-Based Integration and Optimization—Gas-Cycling Benchmark

SPE Journal ◽  
2010 ◽  
Vol 15 (02) ◽  
pp. 646-657 ◽  
Author(s):  
Aleksander Juell ◽  
Curtis H. Whitson ◽  
Mohammad Faizul Hoda

Summary A benchmark for computational integration of petroleum operations has been constructed. The benchmark consists of two gas/ condensate reservoirs producing to a common process facility. A fraction of the processed gas is distributed between the two reservoirs for gas injection. Total project economics is calculated from the produced streams and process-related costs. This benchmark may be used to compare different computational integration frameworks and optimization strategies. Even though this benchmark aims to integrate all parts of a petroleum operation, from upstream to downstream, certain simplifications are made. For example, pipe flow from reservoir to process facility is not included in the integrated model. The methods of model integration and optimization discussed in this paper are applicable to complex petroleum operations where it is difficult to quantify cause and effect without comprehensive model-based integration. A framework for integration of models describing petroleum operations has been developed. An example test problem is described and studied in detail. Substantial gains in full-field development may be achieved by optimizing over the entire production system. All models and data in the benchmark problem are made available so that different software platforms can study the effects of alternative integration methods and optimization solver strategy. The project itself can, and probably should, be extended by others to add more complexity (realism) to the reservoir, process, and economics modeling.

2001 ◽  
Vol 4 (01) ◽  
pp. 26-35
Author(s):  
Richard W. Smith ◽  
Rodolfo Colmenares ◽  
Eulalio Rosas ◽  
Isaura Echeverria

Summary The El Furrial field is one of Venezuela's major field assets and is operated by PDVSA (Petroleos de Venezuela, S.A.), the national oil company. Its current production of more than 450,000 BOPD makes it a giant oil field. Development of the field, which has an average reservoir depth of approximately 15,000 ft, is in its mature stages owing to implementation of high-pressure gas injection. PDVSA has consistently followed a forward planning approach related to reservoir management. Using high-angle deviation drilling techniques allows development wells to be strategically located by penetrating the reservoir at high angles to optimize production rate, extend well life, increase reserves per well, reduce operating expenses, and reduce total field development costs. A reservoir model was constructed and simulated with detailed reservoir stratigraphy to determine realistic potential of high-angle wells (HAW's). Five wells had been drilled as of June 2000, and the first four wells have proved the effectiveness of the design. The philosophy, modeling technique, well design considerations, problems encountered, well results, and economic criteria provide a clear understanding of the risk of this technology not previously used at this depth in Venezuela. The result was the first HAW in the deep, challenging environment of eastern Venezuela. Results show that optimization objectives can be attained with HAW's, mainly increasing per-well production rate, maximizing per-well recovery, and extending the breakthrough time of gas or water from pressure maintenance and enhanced oil recovery projects. Well results indicate that the geological and simulation modeling technique is reliable and accurate. A pilot program shows that HAW technology provides major advantages to increase production rate and reduce the overall number of wells needed to reach production objectives. However, the project also has experienced a number of unexpected drilling problems.1 The costs associated with the total project are significant, but more importantly, this program becomes very attractive because of the long-term benefits of decreased water-cut related to current water injection; decreased gas breakthrough owing to high-pressure gas injection, and fewer wells required to meet production goals. Technical contributions include the following:The modeling technique of applying detailed stratigraphy to a full-scale reservoir model is accurate if performed with the appropriate objectives in mind.The application of state-of-the-art drilling techniques to attain high angles at deep drilling depth is possible; however, drilling problems caused by formation instability require more study and experience.This method can be applied to other fields in the eastern Venezuelan basin currently under, or planned to be under, enhanced recovery programs and development programs. Introduction The El Furrial field is one of several giant fields found northwest of Maturin, Venezuela, in what is described as the El Furrial thrust trend (location shown in Fig. 1). The field was discovered in 1986 with the FUL-1 well, which established production from the Naricual formation. A late 1996 study, using a full-field simulation model of the El Furrial field, showed that problems associated with gas or water breakthrough in producing wells from high-pressure gas injection and water injection can be reduced with this technology. The potential to reduce problems comes from drilling infill wells at a high angle between the advancing gas and water fronts. High-pressure gas injection was started in 1998 and was justified, in part, by this work and other associated studies. The field produces from two formations, the Naricual and Los Jabillos, giving a total gross thickness of more than 1,500 ft. The primary 1,200-ft-thick Naricual formation is divided into three major stratigraphic sequences - the Superior (upper), Medio (middle), and Inferior (lower). Net-to-gross ratio is typically 80%. Philosophy PDVSA has consistently maintained reservoir models through the years to aid in reservoir management.2 To date, eight full-field and numerous sector-simulation models have been built. Optimization of the field began in 1996. During the study, it was noted that predictions of conventional vertical infill wells drilled into the structure had short production lives because of water or gas breakthrough. The review identified the possibility of placing well trajectories between the advancing water and gas fronts. One benefit was that the production rate from new wells could be increased; this indicated that the number of development wells could be reduced, saving investment costs. Thus, the following objectives were determined.Define optimization alternatives of the El Furrial field well-development scheme. The use of nonconventional well completions such as vertical large interval single completions (LISC) and high-angle completion (HAC) wells may present a higher potential for meeting production needs at a lower total development cost.Define the most reasonable completion configuration for new wells in El Furrial field. It is probable that the entire Naricual acts as a single reservoir unit, with at least partial vertical communication existing in the majority of the field caused by fault juxtaposition and limited fractures associated with faults. Therefore, single completions in all of Naricual Superior and Medio, or Naricual Medio and Inferior, may present viable completion alternatives.Provide technical support to the Venezuelan Ministry of Mines and Energy, which approves operation philosophy, development, and completion practices. The HAW program was different from the previous accepted philosophy, so technical support was necessary to permit the FUL-63 pilot test well. High-Angle Wells This work was split into two parts. The first was an evaluation of HAC wells as an alternative to current vertical-well strategies. This includes the possible alternative of LISC completions for all of Naricual Superior and Medio. The second was additional simulation cases to test the potential development plan with only HAC wells in a full-scale reservoir model.


2019 ◽  
Vol 38 (10) ◽  
pp. 786-790
Author(s):  
Yong Keun Hwang ◽  
Helena Zirczy ◽  
Sudhish Bakku

Full-field reservoir models provide key input to annual business plans and reserve booking. They support the long-term field development plan by enabling well target optimization, identification of infill opportunities, water-flood management, and well-surveillance and intervention strategies. It is crucial to constrain the model with all available static and dynamic data to improve its predictive power for confident decision making. Across Shell's global deepwater portfolio, a model-based probabilistic seismic amplitude-variation-with-offset (AVO) inversion methodology is used to constrain reservoir properties as part of a comprehensive quantitative seismic reservoir modeling workflow. Promise, a proprietary probabilistic inversion tool, estimates values of reservoir properties and quantifies their uncertainties through repeated forward modeling and automated quality checking of synthetic against recorded seismic data. During workflow execution, available geologic, petrophysical, and geophysical data are incorporated. As a consequence, the reservoir models are consistent with all relevant subsurface data following their update through inversion. Model-based inversion establishes a direct link between static model properties and elastic impedances. Probabilistic inversion output is an ensemble of posterior static models. The inversion process automatically sorts through the ensemble. It can directly provide low, mid, and high cases of the inverted models that are ready to be used in hydrocarbon volume estimation and multiscenario dynamic modeling for history matching and production forecasting. For successful and efficient delivery of full-field reservoir models with uncertainty assessment using model-based probabilistic AVO inversion, early integration of interdisciplinary subsurface data and cross-business collaboration are key.


2019 ◽  
Vol 103 ◽  
pp. 446-460 ◽  
Author(s):  
Shuo Wang ◽  
Qian Zhang ◽  
Tao Yang ◽  
Liqi Zhang ◽  
Xiaoping Li ◽  
...  

2016 ◽  
Vol 56 (1) ◽  
pp. 29 ◽  
Author(s):  
Neil Tupper ◽  
Eric Matthews ◽  
Gareth Cooper ◽  
Andy Furniss ◽  
Tim Hicks ◽  
...  

The Waitsia Field represents a new commercial play for the onshore north Perth Basin with potential to deliver substantial reserves and production to the domestic gas market. The discovery was made in 2014 by deepening of the Senecio–3 appraisal well to evaluate secondary reservoir targets. The well successfully delineated the extent of the primary target in the Upper Permian Dongara and Wagina sandstones of the Senecio gas field but also encountered a combination of good-quality and tight gas pay in the underlying Lower Permian Kingia and High Cliff sandstones. The drilling of the Waitsia–1 and Waitsia–2 wells in 2015, and testing of Senecio-3 and Waitsia-1, confirmed the discovery of a large gas field with excellent flow characteristics. Wireline log and pressure data define a gross gas column in excess of 350 m trapped within a low-side fault closure that extends across 50 km2. The occurrence of good-quality reservoir in the depth interval 3,000–3,800 m is diagenetically controlled with clay rims inhibiting quartz cementation and preserving excellent primary porosity. Development planning for Waitsia has commenced with the likelihood of an early production start-up utilising existing wells and gas processing facilities before ramp-up to full-field development. The dry gas will require minimal processing, and access to market is facilitated by the Dampier–Bunbury and Parmelia gas pipelines that pass directly above the field. The Waitsia Field is believed to be the largest conventional Australian onshore discovery for more than 30 years and provides impetus and incentive for continued exploration in mature and frontier basins. The presence of good-quality reservoir and effective fault seal was unexpected and emphasise the need to consider multiple geological scenarios and to test unorthodox ideas with the drill bit.


Author(s):  
Tomy Varghese ◽  
Q Chen ◽  
P Rahko ◽  
James Zagzebski
Keyword(s):  

2015 ◽  
Author(s):  
Pungki Ariyanto ◽  
Mohamed.A.. A. Najwani ◽  
Yaseen Najwani ◽  
Hani Al Lawati ◽  
Jochen Pfeiffer ◽  
...  

Abstract This paper outlines how a drilling team is meeting the challenge of cementing a production liner in deep horizontal drain sections in a tight sandstone reservoir. It is intended to show how the application of existing technologies and processes is leading to performance gain and improvements in cementing quality. The full field development plan of the tight reservoir gas project in the Sultanate of Oman is based on drilling around 300 wells targeting gas producing horizons at measured depths of around 6,000m MD with 1,000m horizontal sections. Effective cement placement for zonal isolation is critical across the production liner in order to contain fracture propagation in the correct zone. The first few attempts to cement the production liner in these wells had to overcome many challenges before finally achieving the well objectives. By looking at the complete system, rather than just the design of the cement slurry, the following criteria areas were identified: –Slurry design–Mud removal and cement slurry placement–Liner hanger and float equipment Improvements have been made in each of these areas, and the result has been delivery of a succesfully optimised liner cementing design for all future horizontal wells.


Sign in / Sign up

Export Citation Format

Share Document