Analysis of the Impact of an Intelligent Well Completion on the Oil Production Uncertainty (Russian)

Author(s):  
Ivan Grebenkin ◽  
David R. Davies
2021 ◽  
Author(s):  
Mohammad Soroush ◽  
Mahdi Mahmoudi ◽  
Morteza Roostaei ◽  
Hossein Izadi ◽  
Seyed Abolhassan Hosseini ◽  
...  

Abstract In wake of the biggest oil crash in history triggered by the COVID-19 pandemic; Western Canada in- situ production is under tremendous price pressure. Therefore, the operators may consider shut in the wells. Current investigation offers an insight into the effect of near-wellbore skin buildup because of such shut-in. A series of simulation studies was performed to quantitatively address the impact of well shut-in on the long-term performance of well, in particular on key performance indicators of the well including cumulative steam to oil ratio and cumulative oil production. The long-term shut-in contributes to three main modes of plugging: (1) near-wellbore pore plugging by clays and fines, (2) scaling, and (3) chemical consolidation induced by corrosion. A series of carefully designed simulations was also utilized to understand the potential of skin buildup in the near-wellbore region and within different sand control devices. The simulation results showed a higher sensitivity of well performance to shut-in for the wells in the initial stage of SAGD production. If the well is shut in during the first years, the total reduction in cumulative oil production is much higher compared to a well which is shut-in during late SAGD production life. As the induced skin due to shut-in increases, the ultimate cumulative oil production drops whose magnitude depends on well completion designs. The highest effect on the cumulative oil production is in the case of completion designs with flow control devices (liner deployed and tubing deployed completions). Therefore, wellbore hydraulics and completion design play key roles in the maintenance of uniform inflow profile, and the skin buildup due to shut-in poses a high risk of inflow problem and increases the risk of hot-spot development and steam breakthrough. This investigation offers a new understanding concerning the effect of shut-in and wellbore skin buildup on SAGD operation. It helps production and completion engineers to better understand and select candidate wells for shut-in and subsequently to minimize the skin buildup in wells.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Youwei He ◽  
Shiqing Cheng ◽  
Zhe Sun ◽  
Zhi Chai ◽  
Zhenhua Rui

Abstract Well production rates decline quickly in the tight reservoirs, and enhanced oil recovery (EOR) is needed to increase productivity. Conventional flooding from adjacent wells is inefficient in the tight formations, and Huff-n-Puff also fails to achieve the expected productivity. This paper investigates the feasibility of the inter-fracture injection and production (IFIP) method to increase oil production rates of horizontal wells. Three multi-fractured horizontal wells (MFHWs) are included in a cluster well. The fractures with even and odd indexes are assigned to be injection fractures (IFs) and recovery fractures (RFs). The injection/production schedule includes synchronous inter-fracture injection and production (s-IFIP) and asynchronous inter-fracture injection and production (a-IFIP). The production performances of three MFHWs are compared by using four different recovery approaches based on numerical simulation. Although the number of RFs is reduced by about 50% for s-IFIP and a-IFIP, they achieve much higher oil rates than depletion and CO2 Huff-n-Puff. The sensitivity analysis is performed to investigate the impact of parameters on IFIP. The spacing between IFs and RFs, CO2 injection rates, and connectivity of fracture networks affect oil production significantly, followed by the length of RFs, well spacing among MFHWs, and the length of IFs. The suggested well completion scheme for the IFIP methods is presented. This work discusses the ability of the IFIP method in enhancing the oil production of MFHWs.


2014 ◽  
Vol 17 (03) ◽  
pp. 304-313 ◽  
Author(s):  
A.M.. M. Shehata ◽  
M.B.. B. Alotaibi ◽  
H.A.. A. Nasr-El-Din

Summary Waterflooding has been used for decades as a secondary oil-recovery mode to support oil-reservoir pressure and to drive oil into producing wells. Recently, the tuning of the salinity of the injected water in sandstone reservoirs was used to enhance oil recovery at different injection modes. Several possible low-salinity-waterflooding mechanisms in sandstone formations were studied. Also, modified seawater was tested in chalk reservoirs as a tertiary recovery mode and consequently reduced the residual oil saturation (ROS). In carbonate formations, the effect of the ionic strength of the injected brine on oil recovery has remained questionable. In this paper, coreflood studies were conducted on Indiana limestone rock samples at 195°F. The main objective of this study was to investigate the impact of the salinity of the injected brine on the oil recovery during secondary and tertiary recovery modes. Various brines were tested including deionized water, shallow-aquifer water, seawater, and as diluted seawater. Also, ions (Na+, Ca2+, Mg2+, and SO42−) were particularly excluded from seawater to determine their individual impact on fluid/rock interactions and hence on oil recovery. Oil recovery, pressure drop across the core, and core-effluent samples were analyzed for each coreflood experiment. The oil recovery using seawater, as in the secondary recovery mode, was, on the average, 50% of original oil in place (OOIP). A sudden change in the salinity of the injected brine from seawater in the secondary recovery mode to deionized water in the tertiary mode or vice versa had a significant effect on the oil-production performance. A solution of 20% diluted seawater did not reduce the ROS in the tertiary recovery mode after the injection of seawater as a secondary recovery mode for the Indiana limestone reservoir. On the other hand, 50% diluted seawater showed a slight change in the oil production after the injection of seawater and deionized water slugs. The Ca2+, Mg2+, and SO42− ions play a key role in oil mobilization in limestone rocks. Changing the ion composition of the injected brine between the different slugs of secondary and tertiary recovery modes showed a measurable increase in the oil production.


2021 ◽  
Author(s):  
Michael R Konopczynski ◽  
Mojtaba Moradi

Abstract The design and method of operation of Autonomous Inflow Control Devices are reviewed, including single-phase and multi-phase flow performance. Next, the multi-phase flow of fluids in the annular space between circular conduits is examined based on published information and flow pattern maps. This information is brought together in a thought experiment describing how AICDs and well performance will react to the segregation of fluids upstream of the flow control device, and the potential impact that the degree of restrictiveness on unwanted effluents can affect the flow performance of the reservoir and well. Finally, the impact on well flow performance is quantified by computer modelling of the reservoir inflow performance, annular flow performance, and AICD performance. The sensitivity of well productivity is assessed for multiple flow scenarios adjusting several model parameters, including type and number of AICDs per zone, GOR, water cut, flow rate, and well completion size. Although the concept of an AICD that completely shuts off gas and/or water production sounds appealing to those wishing to eliminate the production of unwanted effluents, a full understanding of the dynamics of inflow from the reservoir and phase segregation in the wellbore is necessary to evaluate the impact of highly restrictive AICDs on well productivity. With annular separation, even small water cuts or limited amounts of free gas flowing into the wellbore can cause most of the highly restrictive AICDs in a multiple device zone to shut, greatly impacting the oil productivity of the zone and the well. Using AICDs that are not as restrictive of the unwanted effluents allows the operator to continue to produce oil at significant rates when associated with low water cuts or reduced free-gas GORs. A workflow for determining the optimum degree of restrictiveness is proposed and demonstrated.


2018 ◽  
Author(s):  
Amba Ndoma Egba ◽  
Joseph A. Ajienka ◽  
Omowumi O. Iledare
Keyword(s):  

2016 ◽  
Vol 8 (1) ◽  
pp. 64-79 ◽  
Author(s):  
Aktham Maghyereh ◽  
Basel Awartani

Purpose This paper aims to examine the impact of oil price uncertainty on the stock market returns of ten oil importing and exporting countries in the Middle East and North Africa (MENA) region. The sample contains both oil importing and oil exporting countries that depend heavily on oil production and exports. Design/methodology/approach This paper intuitively applies the generalized autoregressive conditional heteroskedasticity (GARCH)-in-mean vector autoregression (VAR) model using weekly data over the period January 2001-February 2014. Findings The findings indicate that oil uncertainty matters in the determination of real stock returns. There is a negative and significant relationship between oil price uncertainty and real stock returns in all countries in the sample. The influence of oil price risk is more serious in those economies that depend heavily on oil revenues to grow. Practical implications The findings have important implications. For instance, managers should be aware of the linkages between oil price uncertainty and equity returns when they use oil to hedge and diversify equities, particularly in economies where oil is important for economic growth. The policymakers in oil importing countries should encourage companies to improve efficiency in the usage of energy and to resort to alternative sources to avoid fluctuations in earnings and equity prices. In the countries that heavily depend on oil efforts should focus on diversifying the domestic economy away from oil to protect against oil price fluctuations. Originality/value To the best of our knowledge, this is the first attempt to study the influence of oil price uncertainty in the MENA region. The sample contains both oil importing and oil exporting countries that depend heavily on oil production and exports. The empirical findings of the paper have valuable policy implications for investors, market participants and policymakers.


Significance OPEC's decision to try to agree new quotas for its members, albeit with key exemptions, suggests a fragile consensus is growing around a change in policy direction towards cooperation. Impacts Perceptions will strengthen that Saudi Arabia is prepared to change strategy. A framework and platform for future action should allow OPEC to reassert its cartel position. Agreement on quotas is unlikely to reduce export volumes much, limiting the impact on prices. The prospect of a deal will see further additions to the US rig count, with implications for US oil production in 2017. If prices rise, encouraging more investment, and Libyan and Nigerian output recovers, OPEC output could rise even if quotas are imposed.


Sign in / Sign up

Export Citation Format

Share Document