Development of a Novel and Computationally-Efficient Discrete-Fracture Model to Study IOR Processes in Naturally Fractured Reservoirs

Author(s):  
Ali Moinfar ◽  
Abdoljalil Varavei ◽  
Kamy Sepehrnoori ◽  
Russell Taylor Johns
SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 289-303 ◽  
Author(s):  
Ali Moinfar ◽  
Abdoljalil Varavei ◽  
Kamy Sepehrnoori ◽  
Russell T. Johns

Summary Many naturally fractured reservoirs around the world have depleted significantly, and improved-oil-recovery (IOR) processes are necessary for further development. Hence, the modeling of fractured reservoirs has received increased attention recently. Accurate modeling and simulation of naturally fractured reservoirs (NFRs) is still challenging because of permeability anisotropies and contrasts. Nonphysical abstractions inherent in conventional dual-porosity and dual-permeability models make them inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent technologies for discrete fracture modeling may suffer from large simulation run times, and the industry has not used such approaches widely, even though they give more-accurate representations of fractured reservoirs than dual-continuum models. We developed an embedded discrete fracture model (DFM) for an in-house compositional reservoir simulator that borrows the dual-medium concept from conventional dual-continuum models and also incorporates the effect of each fracture explicitly. The model is compatible with existing finite-difference reservoir simulators. In contrast to dual-continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity of a typical NFR. The accuracy of the embedded DFM is confirmed by comparing the results with the fine-grid, explicit-fracture simulations for a case study including orthogonal fractures and a case with a nonaligned fracture. We also perform a grid-sensitivity study to show the convergence of the method as the grid is refined. Our simulations indicate that to achieve accurate results, the embedded discrete fracture model may only require moderate mesh refinement around the fractures and hence offers a computationally efficient approach. Furthermore, examples of waterflooding, gas injection, and primary depletion are presented to demonstrate the performance and applicability of the developed method for simulating fluid flow in NFRs.


2021 ◽  
Author(s):  
Xupeng He ◽  
Tian Qiao ◽  
Marwa Alsinan ◽  
Hyung Kwak ◽  
Hussein Hoteit

Abstract The process of coupled flow and mechanics occurs in various environmental and energy applications, including conventional and unconventional fractured reservoirs. This work establishes a new formulation for modeling hydro-mechanical coupling in fractured reservoirs. The discrete-fracture model (DFM), in which the porous matrix and fractures are represented explicitly in the form of unstructured grid, has been widely used to describe fluid flow in fractured formations. In this work, we extend the DFM approach for modeling coupled flow-mechanics process, in which flow problems are solved using the multipoint flux approximation (MPFA) method, and mechanics problems are solved using the multipoint stress approximation (MPSA) method. The coupled flow-mechanics problems share the same computational grid to avoid projection issues and allow for convenient exchange between them. We model the fracture mechanical behavior as a two-surface contact problem. The resulting coupled system of nonlinear equations is solved in a fully-implicit manner. The accuracy and generality of the numerical implementation are accessed using cases with analytical solutions, which shows an excellent match. We then apply the methodology to more complex cases to demonstrate its general applicability. We also investigate the geomechanical influence on fracture permeability change using 2D rock fractures. This work introduces a novel formulation for modeling the coupled flow-mechanics process in fractured reservoirs, and can be readily implemented in reservoir characterization workflow.


Sign in / Sign up

Export Citation Format

Share Document