scholarly journals Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs

SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 289-303 ◽  
Author(s):  
Ali Moinfar ◽  
Abdoljalil Varavei ◽  
Kamy Sepehrnoori ◽  
Russell T. Johns

Summary Many naturally fractured reservoirs around the world have depleted significantly, and improved-oil-recovery (IOR) processes are necessary for further development. Hence, the modeling of fractured reservoirs has received increased attention recently. Accurate modeling and simulation of naturally fractured reservoirs (NFRs) is still challenging because of permeability anisotropies and contrasts. Nonphysical abstractions inherent in conventional dual-porosity and dual-permeability models make them inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent technologies for discrete fracture modeling may suffer from large simulation run times, and the industry has not used such approaches widely, even though they give more-accurate representations of fractured reservoirs than dual-continuum models. We developed an embedded discrete fracture model (DFM) for an in-house compositional reservoir simulator that borrows the dual-medium concept from conventional dual-continuum models and also incorporates the effect of each fracture explicitly. The model is compatible with existing finite-difference reservoir simulators. In contrast to dual-continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity of a typical NFR. The accuracy of the embedded DFM is confirmed by comparing the results with the fine-grid, explicit-fracture simulations for a case study including orthogonal fractures and a case with a nonaligned fracture. We also perform a grid-sensitivity study to show the convergence of the method as the grid is refined. Our simulations indicate that to achieve accurate results, the embedded discrete fracture model may only require moderate mesh refinement around the fractures and hence offers a computationally efficient approach. Furthermore, examples of waterflooding, gas injection, and primary depletion are presented to demonstrate the performance and applicability of the developed method for simulating fluid flow in NFRs.

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5488
Author(s):  
Leidy Laura Alvarez ◽  
Leonardo José do Nascimento Guimarães ◽  
Igor Fernandes Gomes ◽  
Leila Beserra ◽  
Leonardo Cabral Pereira ◽  
...  

Fluid flow modeling of naturally fractured reservoirs remains a challenge because of the complex nature of fracture systems controlled by various chemical and physical phenomena. A discrete fracture network (DFN) model represents an approach to capturing the relationship of fractures in a fracture system. Topology represents the connectivity aspect of the fracture planes, which have a fundamental role in flow simulation in geomaterials involving fractures and the rock matrix. Therefore, one of the most-used methods to treat fractured reservoirs is the double porosity-double permeability model. This approach requires the shape factor calculation, a key parameter used to determine the effects of coupled fracture-matrix fluid flow on the mass transfer between different domains. This paper presents a numerical investigation that aimed to evaluate the impact of fracture topology on the shape factor and equivalent permeability through hydraulic connectivity (f). This study was based on numerical simulations of flow performed in discrete fracture network (DFN) models embedded in finite element meshes (FEM). Modeled cases represent four hypothetical examples of fractured media and three real scenarios extracted from a Brazilian pre-salt carbonate reservoir model. We have compared the results of the numerical simulations with data obtained using Oda’s analytical model and Oda’s correction approach, considering the hydraulic connectivity f. The simulations showed that the equivalent permeability and the shape factor are strongly influenced by the hydraulic connectivity (f) in synthetic scenarios for X and Y-node topological patterns, which showed the higher value for f (0.81) and more expressive values for upscaled permeability (kx-node = 0.1151 and ky-node = 0.1153) and shape factor (25.6 and 14.5), respectively. We have shown that the analytical methods are not efficient for estimating the equivalent permeability of the fractured medium, including when these methods were corrected using topological aspects.


SPE Journal ◽  
2021 ◽  
pp. 1-24
Author(s):  
I Shovkun ◽  
H. A. Tchelepi

Summary Mechanical deformation induced by injection and withdrawal of fluids from the subsurface can significantly alter the flow paths in naturally fractured reservoirs. Modeling coupled fluid flow and mechanical deformation in fractured reservoirs relies on either sophisticated gridding techniques or enhancing the variables (degrees of freedom) that represent the physics to describe the behavior of fractured formation accurately. The objective of this study is to develop a spatial discretization scheme that cuts the “matrix” grid with fracture planes and utilizes traditional formulations for fluid flow and geomechanics. The flow model uses the standard low-order finite volume method with the compartmental embedded discrete fracture model (cEDFM). Due to the presence of nonstandard polyhedra in the grid after cutting/splitting, we use numerical harmonic shape functions within a polyhedral finite element (PFE) formulation for mechanical deformation. To enforce fracture-contact constraints, we use a penalty approach. We provide a series of comparisons between the approach that uses conforming unstructured grids and an unstructured discrete fracture model (uDFM) with the new cut-cell PFE formulation. The manuscript validates and compares both methods for linear elastic, single-fracture slip, and Mandel’s problems with tetrahedral, Cartesian, and perpendicular-bisectional (PBI) grids. Finally, the paper presents a fully coupled 3D simulation with multiple inclined intersecting faults activated in shear by fluid injection, which caused an increase in effective reservoir permeability. Our approach allows for great reduction in the complexity of the (gridded) model construction while retaining the solution accuracy together with great savings in the computational cost compared with uDFM. The flexibility of our model with respect to the types of grid polyhedra allows us to eliminate mesh artifacts in the solution of the transport equations typically observed when using tetrahedral grids and two-point flux approximation.


Sign in / Sign up

Export Citation Format

Share Document