Frac Charge Performance at Downhole Conditions: Assessments and Implications

2021 ◽  
Author(s):  
Brenden Grove ◽  
Jacob McGregor ◽  
Rory DeHart ◽  
Ron Dusterhoft ◽  
Neil Stegent ◽  
...  

Abstract Hydraulically fractured completions dominate industry perforating activity, particularly in North American land basins. This has led to the development of fracture-optimized perforating systems in recent years. Aside from overarching safety, reliability, and efficiency priorities, the main technical performance attribute of these systems is consistent hole size in the casing, driven by limited entry fracture design considerations. While the industry continues to seek further improvements in hole size consistency, attention is also being directed to the perforations more holistically, from a perspective of maximizing the effectiveness of subsequent hydraulic fracturing and ultimately production operations. To this end, this paper presents two related activities addressing the development, qualification, and optimization of perf-for-frac systems. The first is a surface testing protocol used to characterize perforating system performance, in particular casing hole size and consistency. The second is a laboratory program, recently conducted to investigate perforating stressed Eagle Ford shale samples at downhole conditions. This program explored the influences of charge size, formation lamination direction, pore fluid, and dynamic underbalance on perforation characteristics. Casing hole size was also assessed. For the first activity (surface testing), we find that using cement-backed casing can be an important feature to ensure more downhole-realistic results. For the second activity (laboratory program), perforation casing hole sizes for the charges tested were in line with expectations based on existing surface test data, exhibiting negligible pressure dependency. Corresponding penetration depths into the stressed shale samples generally ranged from 3.5-in to 5-in, which is much shallower than might be expected based on surface concrete performance. Dynamic underbalance was found to exhibit some slight effect on the tunnel fill characteristics, while pore system fluid was found to have minimal influence on the results. An interesting feature of the perforated samples was the complex fracture network at the perforation tips, which appeared "propped" to some extent with charge liner debris. Some of these fractures were formation beds which had delaminated during the shot, a phenomenon observed for perforations both parallel and perpendicular to the laminations. The implications of these results to the downhole environment continues to be assessed. Of particular interest is the impact these phenomena might have on fracture initiation, formation breakdown, and treatment stages which accompany subsequent hydraulic fracturing pumping operations.

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Minhui Qi ◽  
Mingzhong Li ◽  
Tiankui Guo ◽  
Chunting Liu ◽  
Song Gao ◽  
...  

The oriented perforating is the essential technique to guide the refracture reorientation, but the influence of the oriented perforation design on the refracture steering radius is still unclear. In this paper, the factors influencing the refracture reorientation were studied by simulation models and experiments. The effects of initial fracture, well production, and perforations on the refracture initiation and propagation were analyzed. Three-dimensional finite element models were conducted to quantify the impact of perforation depth, density, and azimuth on the refracture. The large-scale three-axis hydraulic fracturing experiments guided by oriented perforations were also carried out to verify the fracture initiation position and propagation pattern of the simulation results. The research results showed that perforations change the near-wellbore induced stress distribution, thus changing the steering radius of the refracture. According to the simulation results, the oriented perforation design has a significant influence on the perforation guidance effect and refracture characteristics. Five hydraulic fracturing experiments proved the influence of perforating parameters on fracture initiation and morphology, which have a right consistency between the simulation results. This paper presents a numerical simulation method for evaluating the influence of the refracture reorientation characteristics under the consideration of multiple prerefracturing induced-stress and put forward the oriented perforation field design suggestions according to the study results.


2020 ◽  
Vol 38 (6) ◽  
pp. 2466-2484
Author(s):  
Jianguang Wei ◽  
Saipeng Huang ◽  
Guangwei Hao ◽  
Jiangtao Li ◽  
Xiaofeng Zhou ◽  
...  

Hydraulic fracture initiation and propagation are extremely important on deciding the production capacity and are crucial for oil and gas exploration and development. Based on a self-designed system, multi-perforation cluster-staged fracturing in thick tight sandstone reservoir was simulated in the laboratory. Moreover, the technology of staged fracturing during casing completion was achieved by using a preformed perforated wellbore. Three hydraulic fracturing methods, including single-perforation cluster fracturing, multi-perforation cluster conventional fracturing and multi-perforation cluster staged fracturing, were applied and studied, respectively. The results clearly indicate that the hydraulic fractures resulting from single-perforation cluster fracturing are relatively simple, which is difficult to form fracture network. In contrast, multi-perforation cluster-staged fracturing has more probability to produce complex fractures including major fracture and its branched fractures, especially in heterogeneous samples. Furthermore, the propagation direction of hydraulic fractures tends to change in heterogeneous samples, which is more likely to form a multi-directional hydraulic fracture network. The fracture area is greatly increased when the perforation cluster density increases in multi-perforation cluster conventional fracturing and multi-perforation cluster-staged fracturing. Moreover, higher perforation cluster densities and larger stage numbers are beneficial to hydraulic fracture initiation. The breakdown pressure in homogeneous samples is much higher than that in heterogeneous samples during hydraulic fracturing. In addition, the time of first fracture initiation has the trend that the shorter the initiation time is, the higher the breakdown pressure is. The results of this study provide meaningful suggestions for enhancing the production mechanism of multi-perforation cluster staged fracturing.


Author(s):  
J. D. Hyman ◽  
J. Jiménez-Martínez ◽  
H. S. Viswanathan ◽  
J. W. Carey ◽  
M. L. Porter ◽  
...  

Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO 2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yuxin Chen ◽  
Yunhong Ding ◽  
Chong Liang ◽  
Dawei Zhu ◽  
Yu Bai ◽  
...  

Radial drilling-fracturing, the combination of the hydraulic fracturing and radial borehole, is a technology that can guide the hydraulic fractures to directionally propagate and efficiently develop low permeability reservoir. In this paper, an analytical model of two radial boreholes (a basic research unit) is established to predict fracture initiation pressure (FIP) from one particular radial borehole and the interference between radial boreholes when the hydraulic fracturing is guided by multi-radial boreholes. The model is based on the stress superposition principle and the maximum tensile stress criterion. The effects of in situ stress, wellbore pressure, and fracturing fluid percolation are considered. Then, sensitivity analysis is performed by examining the impact of the intersection angle between radial boreholes, the depth difference between radial boreholes, the radius of radial boreholes, Biot coefficient, and the number of radial boreholes. The results show that FIP declines with the increase of radial boreholes number and the decrease of intersection angle and depth difference between radial boreholes. Meanwhile, the increase of radial borehole number and the reduction of intersection angle and depth difference strengthen the interference between radial boreholes, which conduce to the formation of the fracture network connecting radial boreholes. Besides, FIP declines with the increase of radial borehole radius and the decrease of Biot coefficient. Large radius and low Biot coefficient can enlarge the influence range of additional stress field produced by radial boreholes, enhance the mutual interference between radial boreholes, and guide fracture growth between radial boreholes. In hydraulic fracturing design, in order to reduce FIP and strengthen the interference between radial boreholes, the optimization design can be carried out by lowering intersection angle, increasing radius and number of boreholes, and reducing the depth difference between boreholes when the conditions permit. The research clarifies the interference between radial boreholes and provides the theoretical basis for optimizing radial boreholes layout in hydraulic fracturing guided by multi-radial boreholes.


SPE Journal ◽  
1900 ◽  
Vol 25 (01) ◽  
pp. 268-287 ◽  
Author(s):  
Tianbo Liang ◽  
Ke Xu ◽  
Jun Lu ◽  
Quoc Nguyen ◽  
David DiCarlo

Summary Hydraulic fracturing can create a large fracture network that makes hydrocarbon production from low-permeability reservoirs economical. However, water can invade the rock matrix adjacent to the created fractures and generate water blockage that impairs production. Using surfactants as fracturing-fluid additives is a promising method to enhance the fluid flowback, and thus mitigate the water blockage caused by invasion. It is imperative to understand how surfactants work during the fracturing and production stages, so as to maximize their effectiveness in production enhancement. In this study, an experimental investigation is conducted using a “chipflood” sequence that simulates fluid invasion, flowback, and hydrocarbon production from hydraulically fractured reservoirs. All experiments are conducted in a 2.5D glass micromodel that provides direct observation of in-situ phase changes when different Winsor types of microemulsions formed in the porous medium. The results provide direct evidence of the impact of the matrix–fracture interaction as well as water removal when surfactants are used. They further elucidate why surfactants under different Winsor-type conditions perform differently in mitigating the water blockage. This helps to clarify the screening criteria for optimizing flowback surfactant in hydraulic fracturing.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yang Liu ◽  
Congrui Chen ◽  
Tianshou Ma ◽  
Gongsheng Zhu ◽  
Nian Peng ◽  
...  

Abstract Understanding the formation mechanisms of complex fracture networks is vitally important for hydraulic fracturing operations in shale formation. For this purpose, a hydraulic fracturing experiment under a core-plunger scale is conducted to investigate the impact of the bedding plane angle, borehole size, and injection rate on fracture initiation behaviors of laminated shale rock. The results on rock properties demonstrate that the anisotropic characteristics of shale rock are reflected not only in elastic modulus but also in tensile strength. The results of fracturing experiments show that the bedding plane dip angle and borehole size have significant effects on fracture initiation behaviors, in that fracture initiation pressure (FIP) decreases with the increase of those two factors. The impact of injection rate, by contrast, has no obvious variety regulation. The above data is further used to validate our previously proposed fully anisotropic FIP model, which shows better agreement with experimental results than those using other models under various parameter combinations. Finally, a postfracturing analysis is performed to identify the fracture growth patterns and the microstructures on the fracture surfaces. The results show that the hydraulic fractures (HFs) always grow along mechanically favorable directions, and the potential interaction between HFs and bedding planes mainly manifests as fracture arrest. Meanwhile, the roughness of fracture surfaces is physically different from each other, which in turn results in the difficulties of fluid flow and proppant migration. The findings of this study can help for a better understanding of the fracture initiation behavior of laminated shale rock and the corresponding fracture morphology.


Author(s):  
Saeed Delara ◽  
Kendra MacKay

Horizontal directional drilling (HDD) has become the preferred method for trenchless pipeline installations. Drilling pressures must be limited and a “no-drill zone” determined to avoid exceeding the strength of surrounding soil and rock. The currently accepted industry method of calculating hydraulic fracturing limiting pressure with application of an arbitrary safety factor contains several assumptions that are often not applicable to specific ground conditions. There is also no standard procedure for safety factor determination, resulting in detrimental impacts on drilling operations. This paper provides an analysis of the standard methods and proposes two alternative analytical models to more accurately determine the hydraulic fracture point and acceptable drilling pressure. These alternative methods provide greater understanding of the interaction between the drilling pressures and the surrounding ground strength properties. This allows for more accurate determination of horizontal directional drilling limitations. A comparison is presented to determine the differences in characteristics and assumptions for each model. The impact of specific soil properties and factors is investigated by means of a sensitivity analysis to determine the most critical soil information for each model.


2004 ◽  
Vol 19 (2) ◽  
pp. 225-242 ◽  
Author(s):  
OLIVIER GUYADER ◽  
FABIENNE DAURES ◽  
SPYROS FIFAS
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document