hydraulic fracture
Recently Published Documents


TOTAL DOCUMENTS

2403
(FIVE YEARS 652)

H-INDEX

58
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Rinat Lukmanov ◽  
Said Jabri ◽  
Ehab Ibrahim

Abstract The tight gas reservoirs of Haima Supergroup provide the majority of gas production in the Sultanate of Oman. The paper discusses a possibility of using the anomalies from natural radioactivity to evaluate the fracture height for complex tight gas in mature fields of Oman. The standard industry practice is adding radioactive isotopes to the proppant. Spectral Gamma Ray log is used to determine near wellbore traced proppant placement. Spectral Noise log in combination with Production logs helps to identify the active fractures contributing to production. These methods complement each other, but they are obviously associated with costs. Hence, majority of wells are fracced without tracers or any other fracture height diagnostics. However, in several brown fields, an alternative approach to identify fracture height has been developed which provides fit-for-purpose results. It is based on the analysis of naturally occurring radioactive minerals (NORM) precipitation. The anomalies were observed in the many gas reservoirs even in cases when tracers were not used. At certain conditions, these anomalies can be used to characterize fracture propagation and optimize future wells hydraulic Fracture design. A high number of PLTs and well test information were analyzed. Since tight formations normally don't produce without fracturing, radioactive anomalies flag the contributing intervals and hence fracture propagation. The main element of analysis procedure is related to that fact that if no tracers applied, the discrepancy between normalized Open Hole Gamma Ray and Gamma Ray taken during PLT after 6-12 months of production can be used instead to establish fracture height. This method cannot be applied for immediate interpretation of fracture propagation because time is required to precipitate NORM and using the anomalies concept. The advantage of this method is that it can be used in some fields to estimate the frac effectiveness of wells without artificial tracers. It is normally assumed that the Natural radioactivity anomalies appear mainly due to co-production of the formation water. However, in the fields of interest the anomalies appear in wells producing only gas and condensate. This observation provides an opportunity for active fracture height determination at minimum cost.


2022 ◽  
Author(s):  
Aamir Lokhandwala ◽  
Vaibhav Joshi ◽  
Ankit Dutt

Abstract Reservoir simulation is used in most modern reservoir studies to predict future production of oil and gas, and to plan the development of the reservoir. The number of hydraulically fractured wells has risen drastically in recent years due to the increase in production in unconventional reservoirs. Gone are the days of using simple analytic techniques to forecast the production of a hydraulic fracture in a vertical well, and the need to be able to model multiple hydraulic fractures in many stages over long horizontals is now a common practice. The type of simulation approach chosen depends on many factors and is study specific. Pseudo well connection approach was preferred in the current case. Due to the nature of the reservoir simulation problem, a decision needs to be made to determine which hydraulic fracture modeling method might be most suitable for any given study. To do this, a selection of methods is chosen based on what is available at hand, and what is commonly used in various reservoir simulation software packages. The pseudo well connection method, which models hydraulic fractures as uniform conductivity rectangular fractures was utilized for a field of interest referred to as Field A in this paper. Such an assumption of the nature of the hydraulic fracture is common in most modern tools. Field A is a low permeability (0.01md-0.1md), tight (8% to 12% porosity) gas-condensate (API ~51deg and CGR~65 stb/mmscf) reservoir at ~3000m depth. Being structurally complex, it has a large number of erosional features and pinch-outs. The pseudo well connection approach was found to be efficient both terms of replicating data of Field A for a 10 year period while drastically reducing simulation runtime for the subsequent 10 year-period too. It helped the subsurface team to test multiple scenarios in a limited time-frame leading to improved project management.


2022 ◽  
Author(s):  
Dmitrii Smirnov ◽  
Omar AL Isaee ◽  
Alexey Moiseenkov ◽  
Abdullah Al Hadhrami ◽  
Hilal Shabibi ◽  
...  

Abstract Pre-Cambrian South Oman tight silicilyte reservoirs are very challenging for the development due to poor permeability less than 0.1 mD and laminated texture. Successful hydraulic fracturing is a key for the long commercial production. One of the main parameter for frac planning and optimization is fracture geometry. The objective of this study was summarizing results comparison from different logging methods and recommended best practices for logging program targeting fracture geometry evaluation. The novel method in the region for hydraulic fracture height and orientation evaluation is cross-dipole cased hole acoustic logging. The method allows to evaluate fracture geometry based on the acoustic anisotropy changes after frac operations in the near wellbore area. The memory sonic log combined with the Gyro was acquired before and after frac operations in the cased hole. The acoustic data was compared with Spectral Noise log, Chemical and Radioactive tracers, Production Logging and pre-frac model. Extensive logging program allow to complete integrated evaluation, define methods limitations and advantages, summarize best practices and optimum logging program for the future wells. The challenges in combining memory cross-dipole sonic log and gyro in cased hole were effectively resolved. The acoustic anisotropy analysis successfully confirms stresses and predominant hydraulic fractures orientation. Fracture height was confirmed based on results from different logging methods. Tracers are well known method for the fracture height evaluation after hydraulic frac operations. The Spectral Noise log is perfect tool to evaluate hydraulically active fracture height in the near wellbore area. The combination of cased hole acoustic and noise logging methods is a powerful complex for hydraulic fracture geometry evaluation. The main limitations and challenges for sonic log are cement bond quality and hole conditions after frac operations. Noise log has limited depth of investigation. However, in combination with production and temperature logging provides reliable fit for purpose capabilities. The abilities of sonic anisotropy analysis for fracture height and hydraulic fracture orientation were confirmed. The optimum logging program for fracture geometry evaluation was defined and recommended for replication in projects were fracture geometry evaluation is required for hydraulic fracturing optimization.


2022 ◽  
Author(s):  
Abdulrahim K. Al Mulhim ◽  
Jennifer L. Miskimins ◽  
Ali Tura

Abstract This paper focuses on optimizing future well landing zones and their corresponding hydraulic fracture treatments in the Eagle Ford shale play. The optimum landing zone and stimulation treatment were determined by analyzing multiple landing zone options, including the lower Austin Chalk, Eagle Ford, and Pepper Shale, with several hydraulic fracturing treatment possibilities. Fracturing fluids and their volume, proppant size, and cluster spacing were investigated to determine the optimum hydraulic fracturing treatment for the subject geologic area. Ranges of 75,000 to 300,000 gallons of pure gel, pure slickwater, and hybrid fracturing fluids along with 20/40, 30/50, 40/70, and 100 mesh proppant were tested. Cluster spacing of twenty feet to eighty feet were also sensitized in this study. A fully three-dimensional hydraulic fracture modeling software was used to develop a geological and geomechanical model of the studied area. The generated model was calibrated with available field data to ensure that the model reflects the area's geological and geomechanical characteristics. The developed model was used to create fracture results for each sensitized parameter. Production analysis was performed for all fracture models to determine the optimum landing zone and fracturing treatment implications. The study shows that the Eagle Ford had better production than the lower Austin Chalk in the subject area. The Pepper Shale had the highest potential hydrocarbon production, around 326 Mbbl cumulative, when fractured with a pure gel treatment. The analyses showed that a hybrid treatment with 70% gel and 30% slickwater yielded the optimum production due to the treatment economics even though the highest production was obtained using the pure gel. Treating the formation with larger proppant provided better production than smaller proppant due to conductivity concerns associated with damaging mechanisms in the studied area. Since increasing the volume above 175,000 gallons caused a negligible increase in the production, 175,000 gallons of fracturing fluid per stage appeared to be the optimum fracturing fluid volume. Thirty-foot cluster spacing was the optimum spacing in the study area. Overall, the study suggests that oil production can be improved in the Eagle Ford study area through a detailed workflow development and optimization process. The hydraulic fracture treatment and landing zone optimization workflow ensures optimum hydrocarbon extraction from the study area. The developed workflow can be applied to new unconventional plays instead of using trial and error methods.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Lu Gao ◽  
Xiangtao Kang ◽  
Gun Huang ◽  
Ziyi Wang ◽  
Meng Tang ◽  
...  

Hydraulic fracturing can increase the fracture of coal seams, improve the permeability in the coal seam, and reduce the risk of coal and gas outburst. Most of the existing experimental specimens are homogeneous, and the influence of the roof and floor on hydraulic fracture expansion is not considered. Therefore, the hydraulic fracturing test of the simulated combination of the coal seam and the roof and floor under different stress conditions was carried out using the self-developed true triaxial coal mine dynamic disaster large-scale simulation test rig. The results show that (1) under the condition of triaxial unequal pressure, the hydraulic fractures are vertical in the coal seam, and the extension direction of hydraulic fractures in the coal seam will be deflected, with the increase of the ratio of the horizontal maximum principal stress to the horizontal minimum principal stress. The angle between the extension direction of the hydraulic fracture and the horizontal maximum principal stress decreases. (2) Under the condition of triaxial equal confining pressure, the extension of hydraulic fractures in the coal seam are random, and the hydraulic fracture will expand along the dominant fracture surface and form a unilateral expansion fracture when a crack is formed. (3) When the pressure in one direction is unloaded under the condition of the triaxial unequal pressure, the hydraulic fractures in the coal seam will reorientate, and the cracks will expand in the direction of the decreased confining pressure, forming almost mutually perpendicular turning cracks.


Sign in / Sign up

Export Citation Format

Share Document