Achieving Productivity and Clean Inflow from an Unconventional Reservoir in North Kuwait
Abstract Jurassic Kerogen shale/carbonate reservoir in North Kuwait provides the same challenges as North American shales in addition to ones not yet comparable to any other analogue reservoir globally. It is the Kerogen's resource density; however, that makes this play so attractive. Like ‘conventional’ unconventional in the US and Canada this kerogen is believed to be a source rock and is on the order of micro-to nano-Darcy permeability. As such, industry learnings show that likely long horizontal laterals with multiple hydraulic fractures will be necessary to make commercial wells. Following this premise, the immediate objective is to establish clean inflow into wellbore as the previous attempts to appraise failed due to "creep" of particulate material and formation flowing into the wellbore. Achieving this milestone will confirm that this formation is capable of solids free inflow and will open a new era in unconventional in Kuwait. Planning for success, the secondary objective is to then upscale to full field development. The main uncertainties lie in both producibility and ‘frac-ability’, and certainly, these challenges are not trivial. A fully integrated testing program was applied to both better understand the rock mechanical properties and to land on an effective frac design. Scratch, unconfined stress, proppant embedment and fluid compatibility tests were conducted on full core samples for geo-mechanics to prepare a suite of strength measurements ahead of frac design and to custom-design the fracture treatment and "controlled" flowback programs to establish inflow from Kerogen without "creep". Unlike developed shale reservoirs, the Jurassic Kerogen tends to become unconsolidated when treated. The pre-frac geomechanics tests will be outlined in this paper with the primary objective of finding the most competent reservoir unit to select the limited perforation interval to frac through so that formation competency can be maintained. Previous attempts failed to maintain a competent rock matrix even only after pumping data-fracs. Acidizing treatments also turn the treated rock volume into sludgy material with no in-situ stability nor ability to deliver "clean inflow". A propped fracturing treatment with resin-coated bauxite was successfully placed in December 2019 in a vertical appraisal well perforated over 6 ft at 12 spf shot density. "Controlled" flowback carried out in January 2020 achieved the strategically critical "clean inflow" with reservoir fluids established to surface. Special proppant technologies provided by an industry leading manufacturer overcame the embedment effects and to control solids flowback. A properly designed choke schedule to balance unloading with a delicate enough drawdown to avoid formation failure was executed. Local oilfields relied on the vast reserves and produced easily from carbonate reservoirs that required only perforating or acid squeezes to easily meet or exceed high production expectations. This unconventional undertaking in Kuwait presents a real challenge as it is a complete departure from the ways of working yet it points towards a very high upside potential should the appraisal campaign can be completed effectively.