Visualizing and Quantifying Generation, Propagation, and Sweep of Nanocellulose-Strengthened Carbon Dioxide Foam in a Complex 2D Heterogeneous Fracture Network Model
Summary There exist two main issues hampering the wide application and development of carbon dioxide (CO2) foam in conformance improvement and CO2 mobility reduction in fractured systems: (1) instability of foam film under reservoir conditions and (2) uncertainties of foam flow in complex fractures. To address these two issues, we previously developed a series of nanocellulose-strengthened CO2 foam (referred to as NCF-st-CO2 foam), while the primary goal of this work is to thoroughly elucidate generation, propagation, and sweep of NCF-st-CO2 foam in a visual 2D heterogeneous fracture network model. NCF-st-CO2 foam outperformed CO2 foam in reducing gas mobility during either coinjection (COI) or surfactant-alternating-gas (SAG) injection, and the threshold foam quality was approximately 0.67. Foam creation was increased with the total superficial velocity for CO2 foam and almost stayed constant for NCF-st-CO2 foam in fractures during COI. For SAG, large surfactant slug could prevent CO2 from early breakthrough and facilitate foaming in situ. The improved sweep efficiency induced by NCF-st-CO2 foam occurred near the producer for both COI and SAG. Film division and behind mainly led to foam generation in the fracture model. Gravity segregation and override was insignificant during COI but became noticeable during SAG, which caused the sweep efficiency decrease by 3 to 9%. Owing to the enhanced film, NCF-st-CO2 foam enabled mitigation of the gravitational effect, especially around the producer.