foam film
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 18)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Li Ma ◽  
Mahdi Hamidinejad ◽  
Biao Zhao ◽  
Caiyun Liang ◽  
Chul B. Park

AbstractLightweight, high-efficiency and low reflection electromagnetic interference (EMI) shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution. Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming. The unique layered foam/film structure was composed of PVDF/SiCnw/MXene (Ti3C2Tx) composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer. The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires (SiCnw) and 2D MXene nanosheets imparted superior EM wave attenuation capability. Furthermore, the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections. Meanwhile, the highly conductive PVDF/MWCNT/GnPs composite (~ 220 S m−1) exhibited superior reflectivity (R) of 0.95. The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz (R < 0.1) over the Ku-band (12.4 − 18.0 GHz) at a thickness of 1.95 mm. A peak SER of 3.1 × 10–4 dB was obtained which corresponds to only 0.0022% reflection efficiency. In consequence, this study introduces a feasible approach to develop lightweight, high-efficiency EMI shielding materials with ultralow reflection for emerging applications.


SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Bing Wei ◽  
Qingtao Tian ◽  
Shengen Chen ◽  
Xingguang Xu ◽  
Dianlin Wang ◽  
...  

Summary There exist two main issues hampering the wide application and development of carbon dioxide (CO2) foam in conformance improvement and CO2 mobility reduction in fractured systems: (1) instability of foam film under reservoir conditions and (2) uncertainties of foam flow in complex fractures. To address these two issues, we previously developed a series of nanocellulose-strengthened CO2 foam (referred to as NCF-st-CO2 foam), while the primary goal of this work is to thoroughly elucidate generation, propagation, and sweep of NCF-st-CO2 foam in a visual 2D heterogeneous fracture network model. NCF-st-CO2 foam outperformed CO2 foam in reducing gas mobility during either coinjection (COI) or surfactant-alternating-gas (SAG) injection, and the threshold foam quality was approximately 0.67. Foam creation was increased with the total superficial velocity for CO2 foam and almost stayed constant for NCF-st-CO2 foam in fractures during COI. For SAG, large surfactant slug could prevent CO2 from early breakthrough and facilitate foaming in situ. The improved sweep efficiency induced by NCF-st-CO2 foam occurred near the producer for both COI and SAG. Film division and behind mainly led to foam generation in the fracture model. Gravity segregation and override was insignificant during COI but became noticeable during SAG, which caused the sweep efficiency decrease by 3 to 9%. Owing to the enhanced film, NCF-st-CO2 foam enabled mitigation of the gravitational effect, especially around the producer.


2021 ◽  
Vol 928 ◽  
Author(s):  
Paul Grassia

Surfactant transport from foam film to foam film is an essential (yet poorly understood) aspect of the viscoplastic yielding behaviour of flowing foam. Recent experimental and modelling work by Bussonnière & Cantat (J. Fluid Mech., vol. 922, 2021, A25) has, however, helped to advance understanding of the relevant surfactant transport processes: the significance of that work is described herein.


2021 ◽  
Vol 118 (25) ◽  
pp. e2024805118
Author(s):  
Chrystian Ochoa ◽  
Shang Gao ◽  
Samanvaya Srivastava ◽  
Vivek Sharma

Ultrathin foam films containing supramolecular structures like micelles in bulk and adsorbed surfactant at the liquid–air interface undergo drainage via stratification. At a fixed surfactant concentration, the stepwise decrease in the average film thickness of a stratifying micellar film yields a characteristic step size that also describes the quantized thickness difference between coexisting thick–thin flat regions. Even though many published studies claim that step size equals intermicellar distance obtained using scattering from bulk solutions, we found no reports of a direct comparison between the two length scales. It is well established that step size is inversely proportional to the cubic root of surfactant concentration but cannot be estimated by adding micelle size to Debye length, as the latter is inversely proportional to the square root of surfactant concentration. In this contribution, we contrast the step size obtained from analysis of nanoscopic thickness variations and transitions in stratifying foam films using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols, that we developed, with the intermicellar distance obtained using small-angle X-ray scattering. We find that stratification driven by the confinement-induced layering of micelles within the liquid–air interfaces of a foam film provides a sensitive probe of non-DLVO (Derjaguin–Landau–Verwey–Overbeek) supramolecular oscillatory structural forces and micellar interactions.


2020 ◽  
Vol 908 ◽  
Author(s):  
Quentin Raimbaud ◽  
Martin Monloubou ◽  
Steven Kerampran ◽  
Isabelle Cantat
Keyword(s):  

Abstract


2020 ◽  
Vol 4 (4) ◽  
pp. 53
Author(s):  
Dimi Arabadzhieva ◽  
Plamen Tchoukov ◽  
Elena Mileva

Aqueous mixtures of cationic hexadecyltrimethylammonium chloride (CTAC) and nonionic pentaethyleneglycol monododecyl ether (C12E5) are investigated. Adsorption layer properties are systematically studied within a wide concentration range for a 1:1 molar ratio of the surfactants. Surface tension and dilatational rheology measurements are conducted by profile analysis tensiometry. The interfacial data are juxtaposed to drainage kinetics and stability results for microscopic foam films, investigated by microinterferometric thin liquid film instrumentation. The obtained results give experimental evidence of synergistic interactions in the studied solutions, as compared to the corresponding single surfactant systems. Specific runs of dynamic and equilibrium surface tension curves are registered against the total surfactant quantity; the surface dilatational elasticities for the mixtures are systematically higher. A clear correlation is established between adsorption layer performance and foam film characteristics. The maxima of the film lifetimes are well outlined, and the respective values are shifted towards lower overall concentrations. The reported results substantiate the key role of the adsorption layers, and the surface dilatational properties in particular, for foam film drainage kinetics and stability. The well-expressed synergy observed in adsorption layer and foam film properties suggests the substantial benefits of using mixed surfactant systems in the design and fine-tuning of foam systems for innovative applications.


Sign in / Sign up

Export Citation Format

Share Document