Innovative Technologies Deliver Operational Objectives in a Multi-Well, Ultra-Deepwater, Managed Pressure Drilling and Completions Campaign

2021 ◽  
Author(s):  
Andrew Fisher ◽  
Jiten Kaura ◽  
Matthew Kratzer ◽  
Ken Oyler ◽  
Ron Reutzel ◽  
...  

Abstract The deepwater development field in the western Gulf of Mexico (GoM) presents an array of complex challenges for ultra-deepwater drilling operations. The four well campaign was particularly challenging due to extreme water depths, remote location, well trajectory and a narrow pressure environment, 350-100 kpa (50-150 psi), for extended reservoir laterals. The authors highlight the use of innovative technology employed to drill and complete wells in the western GoM deployment, coupled with the first-ever use of controlled mud level (CML), managed pressure drilling technology in the Gulf of Mexico. The approach of selecting the fluid systems to achieve the objectives and the use of hydraulics modeling software with CML modeling capability in the design, planning and execution phases of the project allowed for fluid design optimization. The results were a successful drilling and completion campaign managing multiple fluids systems and operations on an ultra-deepwater, dual-activity drill ship in water depths more than 8,500 ft (2,591 m). The authors discuss the initial use of a low equivalent circulating density (ECD), flat-rheology synthetic based fluid (SBF) designed for narrow margin drilling applications and the transition to the deployment of a newly developed high-performance water-based mud (HPWBM) optimizing the operations to drill the intermediate intervals for final two wells. The authors also will discuss use of the reservoir drill-in fluid (RDF) and solids-free screen running fluids (SF-SRF), designed specifically for use in these open holes, gravel pack completions at hole angles upwards of 90°. Operational efficiencies derived from use of these fluids include ECD management, hole cleaning, directional performance, reduction in downhole losses, and the elimination of non-productive time (NPT) in a narrow margin environment with no loss of rate of penetration (ROP). Additional efficiencies include the seamless transition from derived from use of water-based fluids for drilling and completion phases. Use of the CML technology allowed for precise control of the hydrostatic pressure on wells that previously would not have been technically feasible to drill or complete. The novel use of the newly developed HPWBM on this campaign enabled reduced health, safety and environmental (HSE) exposure impact, increased tank and rig cleaning efficiency, and the elimination of a wellbore cleanout run since the entire well was drilled with only water-based fluids. The fluids were successfully employed in the four wells drilled and completed in a managed pressure environment utilizing CML technology.

2015 ◽  
Vol 3 (4) ◽  
pp. 1540-1548 ◽  
Author(s):  
Sheng Zhu ◽  
Hui Zhang ◽  
Ping Chen ◽  
Lin-Hui Nie ◽  
Chuan-Hao Li ◽  
...  

A facile protocol for the self-assembly of the rGO/β-MnO2 hybrid hydrogel with ultrafine structure and precise control of mass-loading for high performance supercapacitors is reported.


Author(s):  
James E. Miller ◽  
Andrea Ambrosini ◽  
Sean M. Babiniec ◽  
Eric N. Coker ◽  
Clifford K. Ho ◽  
...  

Thermochemical energy storage (TCES) offers the potential for greatly increased storage density relative to sensible-only energy storage. Moreover, heat may be stored indefinitely in the form of chemical bonds via TCES, accessed upon demand, and converted to heat at temperatures significantly higher than current solar thermal electricity production technology and is therefore well-suited to more efficient high-temperature power cycles. The PROMOTES effort seeks to advance both materials and systems for TCES through the development and demonstration of an innovative storage approach for solarized Air-Brayton power cycles and that is based on newly-developed redox-active metal oxides that are mixed ionic-electronic conductors (MIEC). In this paper we summarize the system concept and review our work to date towards developing materials and individual components.


2021 ◽  
Author(s):  
Douglas Belanger

Understanding material thermal conductivity is fundamental in high performance building design. This property is often advertised using a single value implied to be constant, though research shows that insulating materials have an effective conductivity that changes over a range of environmental parameters, including temperature and moisture levels. Various polyurethane and polyisocyanurate materials are analyzed in order to determine how the effective conductivity is altered by accelerated aging, obtained through exposure to high temperature, moisture, and freeze-thaw cycling. The measured results are used in hygrothermal simulations to determine the assumed and actual performance of insulating materials in the context of high performance wall and roof assemblies in cold climates. Results show that effects of aging and environmental temperature have higher impacts on the performance of polyisocyanurate materials than polyurethanes. Additionally, high moisture levels contribute to lower performance in all foam materials, with open cell materials experiencing the greatest performance reduction.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhangli Liu ◽  
Jiaxing Xu ◽  
Min Xu ◽  
Caifeng Huang ◽  
Ruzhu Wang ◽  
...  

AbstractThermally driven water-based sorption refrigeration is considered a promising strategy to realize near-zero-carbon cooling applications by addressing the urgent global climate challenge caused by conventional chlorofluorocarbon (CFC) refrigerants. However, developing cost-effective and high-performance water-sorption porous materials driven by low-temperature thermal energy is still a significant challenge. Here, we propose a zeolite-like aluminophosphate with SFO topology (EMM-8) for water-sorption-driven refrigeration. The EMM-8 is characterized by 12-membered ring channels with large accessible pore volume and exhibits high water uptake of 0.28 g·g−1 at P/P0 = 0.2, low-temperature regeneration of 65 °C, fast adsorption kinetics, remarkable hydrothermal stability, and scalable fabrication. Importantly, the water-sorption-based chiller with EMM-8 shows the potential of achieving a record coefficient of performance (COP) of 0.85 at an ultralow-driven temperature of 63 °C. The working performance makes EMM-8 a practical alternative to realize high-efficient ultra-low-temperature-driven refrigeration.


Sign in / Sign up

Export Citation Format

Share Document