hybrid hydrogel
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 200)

H-INDEX

43
(FIVE YEARS 13)

Author(s):  
Juan Du ◽  
Wenli Zhu ◽  
Qiaoling Yang ◽  
Xiaohong She ◽  
Hang Wu ◽  
...  

Author(s):  
Yili Wang ◽  
Feng Wen ◽  
Xueting Yao ◽  
Lulu Zeng ◽  
Jiaming Wu ◽  
...  

A novel series of composite hydrogels, built from the three components 1), hyaluronic acid methacryloyl (HAMA); 2), gelatin methacryloyl (GelMA), and 3), extracellular cartilage matrix (ECM), was prepared and studied regarding the possible utility in the surgical repair of damaged (perforated) tympanic membrane (TM). Noteworthy is component 3), which was harvested from the ribs of α-1,3-galactosidyltransferase-knockout (α-1,3 GalT-KO) pigs. The absence of α-1,3-galactosyl glycoprotein is hypothesized to prevent rejection due to foreign-body immunogenicity. The composite hydrogels were characterized by various aspects, using a variety of physicochemical techniques: aqueous swelling, structural degradation, behavior under compression, and morphology, e.g., in vitro biocompatibility was assessed by the CCK-8 and live–dead assays and through cytoskeleton staining/microscopy. Alcian blue staining and real-time PCR (RT-PCR) were performed to examine the chondrogenic induction potential of the hydrogels. Moreover, a rat TM defect model was used to evaluate the in vivo performance of the hydrogels in this particular application. Taken together, the results from this study are surprising and promising. Much further development work will be required to make the material ready for surgical use.


Author(s):  
Xinhao Zhao ◽  
Huiru Wang ◽  
Yunlong Zou ◽  
Weiwei Xue ◽  
Yang Zhuang ◽  
...  

Abstract Severe microenvironmental changes after spinal cord injury (SCI) present serious challenges in neural regeneration and tissue repair. Gelatin (GL)- and hyaluronic acid (HA)-based hydrogels are attractive scaffolds because they are major components of the extracellular matrix and can provide a favorable adjustable microenvironment for neurogenesis and motor function recovery. In this study, three-dimensional hybrid GL/HA hydrogel scaffolds were prepared and optimized. The hybrid hydrogels could undergo in-situ gelation and fit the defects perfectly via visible light- induced crosslinking in the complete SCI rats. We found that the transplantation of the hybrid hydrogel scaffold significantly reduced the inflammatory responses and suppressed glial scar formation in an HA concentration-dependent manner. Moreover, the hybrid hydrogel with GL/HA ratios less than 8/2 effectively promoted endogenous neural stem cell migration and neurogenesis, as well as improved neuron maturation and axonal regeneration. The results showed locomotor function improved 60 days after transplantation, thus suggesting that GL/HA hydrogels can be considered as a promising scaffold for complete SCI repair.


Andrologia ◽  
2021 ◽  
Author(s):  
K. U. Vismaya ◽  
T. N. Noorjasmine ◽  
S. Syam Das ◽  
Lakshmi Kesavan ◽  
P. S. Baby Chakrapani ◽  
...  

2021 ◽  
Author(s):  
Chen Hu ◽  
Taufiq Ahmad ◽  
Malik Salman Haider ◽  
Lukas Hahn ◽  
Philipp Stahlhut ◽  
...  

Abstract Alginates are the most commonly used bioink in biofabrication, but their rheological profiles makes it very challenging to perform real 3D printing. In this study, an advanced hybrid hydrogel ink was developed, a mixture of thermogelling diblock copolymer, alginate and clay i.e. Laponite XLG. The reversible thermogelling and shear thinning properties of the diblock copolymer in the ink system improves handling and 3D printability significantly. Various three-dimensional constructs, including suspended filaments, were printed successfully with high shape fidelity and excellent stackability. Subsequent ionic crosslinking of alginate fixates the printed scaffolds, while the diblock copolymer is washed out of the structure, acting as a fugitive material on the (macro)molecular level. Finally, cell-laden printing and culture over 21 days demonstrated good cytocompatibility and feasibility of the novel hybrid hydrogels for 3D bioprinting. We believe that the developed material could be interesting for a wide range of bioprinting applications including tissue engineering and drug screening, potentially enabling also other biological bioinks such as collagen, hyaluronic acid, decellularized extracellular matrix or cellulose based bioinks.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 247
Author(s):  
Guanhuier Wang ◽  
Yang An ◽  
Xinling Zhang ◽  
Pengbing Ding ◽  
Hongsen Bi ◽  
...  

Three-dimensional cell-laden tissue engineering has become an extensive research direction. This study aimed to evaluate whether chondrocyte spheroids (chondro-spheroids) prepared using the hanging-drop method could develop better cell proliferation and morphology maintenance characteristics, and be optimized as a micro unit for cartilage tissue engineering. Chondro-spheroids were loaded into a cross-linkable hybrid hydrogel of gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) in vivo and in vitro. Cell proliferation, aggregation, cell morphology maintenance as well as cartilage-related gene expression and matrix secretion in vitro and in vivo were evaluated. The results indicated that compared with chondrocyte-laden hydrogel, chondro-spheroid-laden hydrogel enhanced proliferation, had better phenotype maintenance, and a more natural morphological structure, which made it appropriate for use as a micro unit in cartilage tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document