Mitigation of High Temperature Challenges in Limestone Acidizing through the use of Chelating Agents

2021 ◽  
Author(s):  
Mandeep Khan ◽  
Mohammed Qamruzzaman ◽  
Dhirendra Chandra Roy ◽  
Ravi Raman

Abstract Acid jobs with conventional acid systems like hydrochloric acid in high temperature conditions is challenging on various fronts. Enhanced reactivity of strong acids results in poor penetration and severe face dissolution. Also, it aggravates the issue of corrosion of downhole equipment and may also result in sludge formation/asphaltene deposition. Worldwide, chelating agents has emerged as a standalone stimulation fluid for high temperature acidizing. Their unique attributes and properties have been proved very useful for acid jobs at elevated temperatures. However, the chelating agents-based formulations need to be carefully evaluated on various acidization parameters for a fruitful stimulation. Mumbai Offshore field has been encountering the above-mentioned problems in acidizing of its high temperature (>275°F) limestone reservoirs. The paper presents innovative solutions devised for high temperature matrix acidizing. Two chelating agents viz., EDTA (Ethylenediaminetetraceticacid) and GLDA (L-Glutamic Acid N, N-diacetic acid) were explored and evaluated with meticulous laboratory studies. The performance of the chelating agent-based stimulation fluid was compared with acetic acid. Slurry tests were performed to quantify the dissolving power of each acid. Consequently, core flooding tests were carried out to to find the optimum pH of the chelating agents from stimulation point of view. Core flooding studies were performed at anticipated injection rates on representative core samples from a payzone A, with BHT 275-290° F, from Mumbai Offshore. pH optimized formulations were tested against N-80 metallurgy coupons at reservoir temperature for corrosion potential estimation. Also, sludge, asphaltene and emulsion formation tendencies were analyzed with representative oil samples. The results convey that both EDTA and GLDA were able to mitigate the challenges encountered at elevated temperatures. EDTA and GLDA were found to stimulate the cores with wormholes formed at wide pH range with no face dissolution observed. Chelating agents enjoyed good dissolving power with negligible corrosion rates, absence of sludge and asphaltene deposition, compatibility with formation fluid and excellent iron control properties.

2017 ◽  
Vol 8 (10) ◽  
pp. 3533-3541 ◽  
Author(s):  
Yang Li ◽  
Jing Li ◽  
Tianhong Liu ◽  
Ying Wang ◽  
Zhongzheng Zhou ◽  
...  

In this work, a thermal and wide pH range stable biological agent was extracted from Perinereis aibuhitensis, whose antithrombotic activity was investigated.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4212
Author(s):  
Mohamed Said ◽  
Bashirul Haq ◽  
Dhafer Al Shehri ◽  
Mohammad Mizanur Rahman ◽  
Nasiru Salahu Muhammed ◽  
...  

Tertiary oil recovery, commonly known as enhanced oil recovery (EOR), is performed when secondary recovery is no longer economically viable. Polymer flooding is one of the EOR methods that improves the viscosity of injected water and boosts oil recovery. Xanthan gum is a relatively cheap biopolymer and is suitable for oil recovery at limited temperatures and salinities. This work aims to modify xanthan gum to improve its viscosity for high-temperature and high-salinity reservoirs. The xanthan gum was reacted with acrylic acid in the presence of a catalyst in order to form xanthan acrylate. The chemical structure of the xanthan acrylate was verified by FT-IR and NMR analysis. The discovery hybrid rheometer (DHR) confirmed that the viscosity of the modified xanthan gum was improved at elevated temperatures, which was reflected in the core flood experiment. Two core flooding experiments were conducted using six-inch sandstone core plugs and Arabian light crude oil. The first formulation—the xanthan gum with 3% NaCl solution—recovered 14% of the residual oil from the core. In contrast, the modified xanthan gum with 3% NaCl solution recovered about 19% of the residual oil, which was 5% higher than the original xanthan gum. The xanthan gum acrylate is therefore more effective at boosting tertiary oil recovery in the sandstone core.


2008 ◽  
Vol 23 (01) ◽  
pp. 32-38 ◽  
Author(s):  
Syed A. Ali ◽  
Emee Ermel ◽  
John Clarke ◽  
Michael J. Fuller ◽  
Zhijun Xiao ◽  
...  

2005 ◽  
Author(s):  
Syed Afaq Ali ◽  
Emee Ermel ◽  
John Clarke ◽  
Michael James Fuller ◽  
Zhijun Xiao ◽  
...  

2018 ◽  
Vol 42 (10) ◽  
pp. 8062-8073 ◽  
Author(s):  
Sofia Gama ◽  
Mariachiara Frontauria ◽  
Nico Ueberschaar ◽  
Giuseppe Brancato ◽  
Demetrio Milea ◽  
...  

8-HQA is a good sequestering agent towards Fe2+ and Fe3+ over a wide pH range.


Cellulose ◽  
2021 ◽  
Author(s):  
Marianna Granatier ◽  
Inge Schlapp-Hackl ◽  
Huy Quang Lê ◽  
Kaarlo Nieminen ◽  
Leena Pitkänen ◽  
...  

AbstractThis study focuses on the investigation of the extent of the γ-valerolactone (GVL) hydrolysis forming an equilibrium with 4-hydroxyvaleric acid (4-HVA) in aqueous solutions over a wide pH range. The hydrolysis of a 50 wt% GVL solution to 4-HVA (3.5 mol%) was observed only at elevated temperatures. The addition of sulfuric acid (0.2 × 10–5 wt% to 6 wt%) at elevated temperatures (150–180 °C) and reaction times between 30 and 180 min caused the formation of 4 mol% 4-HVA. However, with decreasing acidity, the 4-HVA remained constant at about 3 mol%. The hydrolysis reactions in alkaline conditions were conducted at a constant time (30 min) and temperature (180 °C) with the variation of the NaOH concentration (0.2 × 10–6 wt% to 7 wt%). The addition of less than 0.2 wt% of NaOH resulted in the formation of less than 4 mol% of sodium 4-hydroxyvalerate. A maximum amount of 21 mol% of 4-HVA was observed in a 7 wt% NaOH solution. The degree of decomposition after treatment was determined by NMR analysis. To verify the GVL stability under practical conditions, Betula pendula sawdust was fractionated in 50 wt% GVL with and without the addition of H2SO4 or NaOH at 180 °C and a treatment time of 120 min. The spent liquor was analyzed and a 4-HVA content of 5.6 mol% in a high acidic (20 kg H2SO4/t wood) and 6.0 mol% in an alkaline (192 kg NaOH/t wood) environment have been determined.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Hanane Touijer ◽  
Najoua Benchemsi ◽  
Mohamed Ettayebi ◽  
Abdellatif Janati Idrissi ◽  
Bouchra Chaouni ◽  
...  

Objectives. Identification of cellulolytic microorganisms is of great interest to the hydrolysis of cellulosic biomass. This study focuses on the identification of cellulolytic yeasts and the optimization of cellulase activities produced by the best performing isolate. Results. 30 cellulolytic yeast isolates were selected. Enzymes produced by an isolate from the Trichosporon genus showed the property to hydrolyze different substrates: carboxymethyl cellulose (CMC), cellulose fiber, and filter paper (FP). The optimum measured temperature was 55°C for CMCase and 60°C for FPase. The optimal pH was 5 for CMCase and 4 to 6 for FPase. The effect of the substrates concentration showed that the best activities were obtained at 100 mg/mL CMC or FP. The highest activities were 0.52 for the CMCase and 0.56 for the cellulase fiber at 10 min incubation, 0.44 IU/mL at 15 min incubation, and 24 h FPase preincubation. Conclusion. Cellulases produced by the studied yeast are capable of hydrolyzing soluble and insoluble substrates at elevated temperatures and at a wide pH range. They are considerable interest in the production of fermentable sugars from lignocellulosic substrates.


2021 ◽  
Author(s):  
Marianna Granatier ◽  
Inge Schlapp-Hackl ◽  
Huy Quang Lê ◽  
Kaarlo Nieminen ◽  
Herbert Sixta

Abstract This study investigates the extent of the g-valerolactone (GVL) hydrolysis forming an equilibrium with 4-hydroxyvaleric acid (4-HVA) in aqueous solutions over a wide pH range. The hydrolysis of pure 50 wt% GVL to 4-HVA (3.5 mol%) was observed only at elevated temperatures. The addition of sulfuric acid (0.2×10-5 wt% to 6 wt%) at elevated temperatures (150 – 180°C) and reaction times between 30-180 min caused the formation of 4 mol% 4-HVA but with decreasing acidity, the 4-HVA remained constant at about 3 mol%. The hydrolysis reactions in alkaline conditions were conducted at constant time (30 min) and temperature (180 °C) with variation of the NaOH concentration (0.2×10-6 wt% to 7 wt%). The addition of less than 0.2 wt % of NaOH resulted in the formation of less than 4 mol% of sodium 4-hydroxyvalerate. A maximum amount of 21 mol% of 4-HVA was observed in a 7 wt% NaOH solution. The stability after synthesis was determined by NMR analysis. To verify the GVL stability results obtained under practical conditions, Betula pendula sawdust was fractionated in 50% GVL with and without addition of H2SO4 or NaOH at 180°C and 120 min, and spent liquor was analyzed. The spent liquor contained 5.6 mol% and 6.0 mol% of 4-HVA in a highly acidic (20 kg H2SO4/t wood) and alkaline (192 kg NaOH/ t wood) environment, respectively.


2002 ◽  
Author(s):  
A. Husen A. Ali ◽  
W.W. Frenier ◽  
Z. Xiao ◽  
M. Ziauddin

Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


Sign in / Sign up

Export Citation Format

Share Document