spent liquor
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Md. Mostafizur Rahman ◽  
Nur-Al-Sarah Rafsan ◽  
Jannatun Nayeem ◽  
Mohammad Moniruzzaman ◽  
M. Sarwar Jahan

Abstract Rice straw was fractionated with nitric acid in order to avoid the cooking liquor recovery in pulp production from agricultural residue (rice straw). The rice straw treated with 11.03% nitric acid at 90 ℃ for 3hr yields 53.09% pulp. The nitric acid treated rice straw pulp had high amount of lignin and minerals. However, further treatment of nitric acid pulp with low potassium hydroxide reduced the lignin and ash sufficiently as well as the pulp yield. Pulp yield reduced from 53.09 to 34.27%. The papermaking properties of the nitric acid followed by KOH treated pulp showed better quality than the nitric acid pulp. Nitric acid liquor was used several times. Pulp yield decreased in every step of reusing of the nitric acid spent liquor although residual lignin content increased. The final effluent liquor was rich with potassium, nitrogen and biomass that can be used as soil nutrient for cultivation.


2021 ◽  
pp. 337-343
Author(s):  
Ol'ga Sergeyevna Yakubova ◽  
Elena Yur'yevna Demyantseva ◽  
Regina Smith Smith

During the wood delignification a multicomponent spent liquor (black liquor) is formed. Depending on the type of wood, black liquor is enriched with valuable extractives. The isolation of extractives from processing liquors and their conversion into biologically active substances, tall products is according to development trend of pulp and paper industry. It includes the introduction of scientific based technologies in manufacturing processes with reference to modern environmental protection requirements. Now the extraction efficiency of sulphate soap does not exceed 75–80% whereby the quality of obtained soap is low. Sulphate soap, especially extracted after hardwood cooking, contains a large amount of impurities. This complicates the process of soap treatment into valuable biologically active substances (beta-sitosterol, etc.).  In the present work the addition of demulsifying and coagulating substances into the black liquor is proposed to intensify the hardwood sulphate soap extraction. The chemical colloidal characteristics of the obtained sulphate soap were investigated. Two critical micelle concentration (CMC) were found on the surface tension isotherms. The second critical micelle concentration (CMC2) in the concentration range of 0.9–1.0% CMC2 indicates the restructuring of micelles into a spherocylindrical shape. A comparative qualitative and quantitative analysis of the composition of sulfate soap obtained in industrial conditions and in the presence of selected additives in laboratory was carried out. Surfactants promote the extraction of phytosterol from black liquor obtained from hardwood species cooking. The influence of surfactant addition on the main physical and colloidal chemical characteristics of black liquor before and after isolation of sulphate soap is investigated. A decrease in viscosity and a de foaming of a black liquor solution is observed as a result of the addition of surfactant additives.


2021 ◽  
Vol 174 ◽  
pp. 114187
Author(s):  
Junjun Zhu ◽  
Han Zhang ◽  
Ningxin Jiao ◽  
Yuxin Xiao ◽  
Dawei Shi ◽  
...  

Author(s):  
Olga S. Yakubova ◽  
◽  
Elena Yu. Demiantseva ◽  
Regina A. Smit ◽  
Vladimir K. Dubovy

Currently, the main trend of the pulp and paper industry development is bio-refining. It is based on integrated and deep processing of wood raw materials to obtain products with higher value added and reduced amount of waste. One of the high priority tasks of bio-refining is improvement of technology of by-product (sulphate soap) extraction from spent liquor with an increase in the yield and quality of the resulting product and a decrease in the level of environmental pollution. The complexity and energy intensity of sulphate soap extraction from spent liquor depends on many factors, including the species used for wood cooking, composition of extractives, the method of wood preparation for delignification, etc. Sulphate soap is a multicomponent emulsion with a predominant content of resin and fatty acids, small amount of unsaponifiable substances and an admixture of lignin, which is mainly extracted from waste liquior by settling. The low degree of its extraction is associated with the absence of systematical data on the mutual influence of the sulphate soap components. In this work, the patterns of intermolecular interaction of the individual components of the by-product (sulphate soap) are found. For this purposes the critical concentration of micelle formation (CCM) and surface tension depression of surface-active sodium oleate and sodium abietate and their mixtures of varying compositions were determined by the methods of tensiometry and conductometry. A detailed analysis of its mixed micelles and adsorption layers was carried out using the Rubin–Rosen pseudophase model. The interaction mechanisms of components in mixtures are explained. The impact on the composition of micelles and adsorption layers of the more surface-active sodium oleate was detected in mixed solutions. A maximum synergistic effect of micelle formation was observed in mixtures with a predominant content of sodium abietate. Analysis of experimental data and the result of sulphate soap modeling allow substantiating the complexity of its extraction from waste liquor after wood cooking with the presence of hardwood over 30 %, which is explained by the reduced content of resin acids in black liquor. For citation: Yakubova O.S., Demiantseva E.Yu., Smit R.A., Dubovy V.K. Analysis of Micelle Formation and Adsorption Layers of Binary Mixtures of Sulphate Soap Components. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 6, pp. 196–205. DOI: 10.37482/0536-1036-2021-6-196-205


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7072
Author(s):  
Sandra Magina ◽  
Nuno Gama ◽  
Luísa Carvalho ◽  
Ana Barros-Timmons ◽  
Dmitry Victorovitch Evtuguin

The feasibility of using lignosulfonate (LS) from acid sulphite pulping of eucalyptus wood as an unmodified polyol in the formulation of polyurethane (PU) adhesives was evaluated. Purified LS was dissolved in water to simulate its concentration in sulphite spent liquor and then reacted with 4,4′-diphenylmethane diisocyanate (pMDI) in the presence or absence of poly(ethylene glycol) with Mw 200 (PEG200) as soft crosslinking segment. The ensuing LS-based PU adhesives were characterized by infrared spectroscopy and thermal analysis techniques. The adhesion strength of new adhesives was assessed using Automated Bonding Evaluation System (ABES) employing wood strips as a testing material. The results showed that the addition of PEG200 contributed positively both to the homogenization of the reaction mixture and better crosslinking of the polymeric network, as well as to the interface interactions and adhesive strength. The latter was comparable to the adhesive strength recorded for a commercial white glue with shear stress values of almost 3 MPa. The optimized LS-based PU adhesive formulation was examined for the curing kinetics following the Kissinger and the Ozawa methods by non-isothermal differential scanning calorimetry, which revealed the curing activation energy of about 70 kJ·mol−1.


Cellulose ◽  
2021 ◽  
Author(s):  
Marianna Granatier ◽  
Inge Schlapp-Hackl ◽  
Huy Quang Lê ◽  
Kaarlo Nieminen ◽  
Leena Pitkänen ◽  
...  

AbstractThis study focuses on the investigation of the extent of the γ-valerolactone (GVL) hydrolysis forming an equilibrium with 4-hydroxyvaleric acid (4-HVA) in aqueous solutions over a wide pH range. The hydrolysis of a 50 wt% GVL solution to 4-HVA (3.5 mol%) was observed only at elevated temperatures. The addition of sulfuric acid (0.2 × 10–5 wt% to 6 wt%) at elevated temperatures (150–180 °C) and reaction times between 30 and 180 min caused the formation of 4 mol% 4-HVA. However, with decreasing acidity, the 4-HVA remained constant at about 3 mol%. The hydrolysis reactions in alkaline conditions were conducted at a constant time (30 min) and temperature (180 °C) with the variation of the NaOH concentration (0.2 × 10–6 wt% to 7 wt%). The addition of less than 0.2 wt% of NaOH resulted in the formation of less than 4 mol% of sodium 4-hydroxyvalerate. A maximum amount of 21 mol% of 4-HVA was observed in a 7 wt% NaOH solution. The degree of decomposition after treatment was determined by NMR analysis. To verify the GVL stability under practical conditions, Betula pendula sawdust was fractionated in 50 wt% GVL with and without the addition of H2SO4 or NaOH at 180 °C and a treatment time of 120 min. The spent liquor was analyzed and a 4-HVA content of 5.6 mol% in a high acidic (20 kg H2SO4/t wood) and 6.0 mol% in an alkaline (192 kg NaOH/t wood) environment have been determined.


Author(s):  
N. Vedaraman ◽  
Kota Srinivas ◽  
D. Krishnamoorthy ◽  
V. Aparna ◽  
V. P. Anand ◽  
...  

The control of pH of a process plays an important role in many chemical or biological reactions. The monitoring and control of pH of processes like wastewater treatment, manufacturing food and leather making facilitate to reduce pollution and improve the quality of the final product. The focus of this study is to optimize the usage of lime and recycling of spent liquor through continuous monitoring system of pH to achieve near zero residue from liming operation. But the challenges are nonlinear behaviour of the system and frequent fouling of pH sensors. The system developed monitors the pH values and controls the cycling time and the addition of lime as per the user set profile. The real time data of pH values in the process is logged on to the PC for further analysis. The efficacy of the system developed was validated at lab level and can be easily scaled up for implementation in industries. The results showed that the effluent from leather making can be minimized by adopting automated pH monitoring and control systems.


Author(s):  
V. John Sundar ◽  
C. Muralidharan

Dyeing is the important unit process in leather manufacturing, which adds value to the leather. Although formic acid is used for fixing of dyes in leather processing, difficulties do arise in fixation of certain dye stuffs. Further high quantities of formic acid used do create health issues and adds to high cost of production. Compounds such as formic acid, acetic acid, mixture of organic acids and quaternary ammonium compounds have been found to function as dye fixatives. The efficacy of these compounds to function as dye fixatives for various dye stuffs and substances either alone or along with formic acid has been studied in detail in this work. The physical and color characteristics of leather and spent liquor analysis have been carried out.


2021 ◽  
Author(s):  
Marianna Granatier ◽  
Inge Schlapp-Hackl ◽  
Huy Quang Lê ◽  
Kaarlo Nieminen ◽  
Herbert Sixta

Abstract This study investigates the extent of the g-valerolactone (GVL) hydrolysis forming an equilibrium with 4-hydroxyvaleric acid (4-HVA) in aqueous solutions over a wide pH range. The hydrolysis of pure 50 wt% GVL to 4-HVA (3.5 mol%) was observed only at elevated temperatures. The addition of sulfuric acid (0.2×10-5 wt% to 6 wt%) at elevated temperatures (150 – 180°C) and reaction times between 30-180 min caused the formation of 4 mol% 4-HVA but with decreasing acidity, the 4-HVA remained constant at about 3 mol%. The hydrolysis reactions in alkaline conditions were conducted at constant time (30 min) and temperature (180 °C) with variation of the NaOH concentration (0.2×10-6 wt% to 7 wt%). The addition of less than 0.2 wt % of NaOH resulted in the formation of less than 4 mol% of sodium 4-hydroxyvalerate. A maximum amount of 21 mol% of 4-HVA was observed in a 7 wt% NaOH solution. The stability after synthesis was determined by NMR analysis. To verify the GVL stability results obtained under practical conditions, Betula pendula sawdust was fractionated in 50% GVL with and without addition of H2SO4 or NaOH at 180°C and 120 min, and spent liquor was analyzed. The spent liquor contained 5.6 mol% and 6.0 mol% of 4-HVA in a highly acidic (20 kg H2SO4/t wood) and alkaline (192 kg NaOH/ t wood) environment, respectively.


2021 ◽  
Vol 203 ◽  
pp. 105994
Author(s):  
Eszter Kása ◽  
Márton Szabados ◽  
Kornélia Baán ◽  
Zoltán Kónya ◽  
Ákos Kukovecz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document